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A method is presented for studying asymptotically flat spaces possessing both incoming and outgoing
gravitational radiation at infinity, The method uses multipole expansions and the invariance of general
relativity under time reversal; calculations are facilitated by a small-parameter perturbation approach.
Some calculations are carried out to second order to show the practicability of the method.

1. INTRODUCTION

IGNIFICANT progress has been made in recent
years in finding and understanding, in an asymp-
totic approximation, asymptotically flat solutions of
the empty-space Einstein field equations. However,
this work has been formulated in a way that is
suitable primarily for retarded gravitational radiation
fields. It is the purpose of this paper to present a
method, based on the use of multipole expansions but
with a small-parameter perturbation approximation
instead of an asymptotic approximation, for treating
problems involving both retarded and advanced
asymptotic gravitational radiation. We hope the
method will facilitate the handling of problems
concerning the scattering of gravitational radiation.
The essential first step in the recent progress was
taken by Bondi and his co-workers.! They expanded
the metric in inverse powers of a coordinate r, a
luminosity parameter along the null geodesics pointing

* Supported in part by the National Science Foundation and
by Aerospace Research Laboratories, Office of Aerospace Research,
U.S. Air Force. This work incorporates some of the results of the
first author’s doctoral dissertation at the University of Pittsburgh.

1 H. Bondi, M. Van der Burg, and A. Metzner, Proc. Roy. Soc.
(London) A269, 21 (1962).

into the future of the localized source. They sub-
stituted their expansion into the empty-space Einstein
equations and obtained differential equations for the
coefficients in the expansion. They worked out the
initial data for their set of equations and found that
the principal piece of initial data was an arbitrary
function of a timelike coordinate, called the ‘“‘news
function” by Bondi, which described the information
radiated to infinity. Bondi’s assumption of axial
symmetry was dropped by Sachs,? and the emphasis
was shifted from expanding the metric tensor to
expanding the Weyl tensor by Newman and Penrose?
(which we refer to as NP); the latter also introduced
the tetrad formalism used in this paper. In NP it was
shown that the assumptions needed to ensure asymp-
totic flatness of the space could be weakened somewliat
from those of Bondi’s work.

In a subsequent paper? (which we refer to as NU)
Newman and Unti analyzed the field equations and
solved the initial-value problem in the NP formalism.
Their coordinates were built, as were Bondi’s, around

2 R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).
3 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
4 E. Newman and T. Unti, J. Math. Phys. 3, 891 (1962).
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the families of null hypersurfaces known to exist in
any normal hyperbolic Riemannian space. The label
u of these hypersurfaces was introduced as a timelike
coordinate, and the expansion coordinate r was
defined as an affine parameter along the null geodesics
lying in these hypersurfaces. Since their data were
being given on characteristic hypersurfaces of the
space, they were able to give them free of constraints.®
The initial data consisted essentially of two parts:

(1) an arbitrary function of u (i.e., time) analogous
to Bondi’s news function, and

(2) a specification of part of the Weyl tensor on a

particular null hypersurface labeled by u = 4, .
If the null hypersurfaces are taken to be the future null
cones, the first piece of data specifies the retarded
radiation (asymptotically). The second piece of data
gives everything else. In past work it has been inter-
preted as giving nonradiative information about the
space, while we see that it also contains a specification
of the advanced radiation.

The formalism and results of NP and NU are
outlined in Sec. 2 in sufficient detail for the work
that follows. In addition to isolating the initial data
NU also derived asymptotic solutions to the field
equations on an arbitrary null hypersurface and non-
linear differential equations for the development of
the system off the initial hypersurface.

A common method of dealing with the nonlinear
calculations of general relativity is to assume the
quantities of interest (the Riemann tensor or, equiv-
alently, the departure of the metric tensor from
flatness) to be small. One then neglects all second-
order products and gets a set of linear differential
equations—a linearization of the Einstein field
equations. After solving the linearized equations one
can go on and attempt to find the second-order
corrections to the linear solutions, etc., and discover
the nonlinear effects of the theory. This perturbation
method has been started on the nonlinear time
development equations derived in NU in a paper®
(which we refer to as JN) by Janis and Newman.
They have linearized and found solutions of these
equations in the axially symmetric case. In Sec. 3
equations are derived for finding the second-order
corrections to any solution of the linearized equations.

The linearized solutions presented in JN were all
retarded solutions. Of course, it is a trivial matter to
do a time reversal so that we have advanced solutions
instead; however, the null hypersurfaces also change
from future null cones to past null cones. Thus we

5 R. Penrose, Aeronautical Research Laboratories ARL 63-56
(1963).
8 A. Janis and E. Newman, J. Math. Phys. 6, 902 (1965).
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end up working in different coordinates as well as
with a different solution. In doing a scattering problem
we want to be able to express both kinds of radiation
in terms of one set of coordinates. In Sec. 4 equations
are derived, within the context of the perturbation
theory, that enable us to re-express, to second order,
given solutions on the “other” cone. This method
would enable us to take, for example, the linear
advanced solutions in terms of past null cone coordi-
nates, obtained from the retarded JN solutions by a
time reversal, and rewrite them in terms of coordinates
based on the future cones.

In Sec. 5 the linear theory is investigated in detail.
We approach the solution of the linearized equations
somewhat differently than did JN. We find it con-
venient to solve first for the advanced radiation
solutions on the future light cones, and then by a
time reversal and the transformations of Sec. 4,
rederive the retarded solutions of JN. Along with the
new advanced solutions we also obtain a simplified
form of the JN retarded solutions.

A method of approaching nonlinear scattering
calculations is contained in Secs. 3, 4, and 35, in that
we have a general method of giving linearized solutions
including both retarded and advanced gravitational
radiation, and of calculating second-order corrections
to those solutions. In Sec. 6 initial data for a par-
ticular problem (an imploding-exploding quadrupole
wave with a mass at its focus) are given, and in-
complete calculations are carried out to second order.
In Sec. 7 it is argued that complete second-order
corrections could be obtained by lengthy but straight-
forward manipulations. In addition it is pointed out
that even our incomplete results not only include some
previously known effects, but suggest some new,
physically reasonable characteristics of gravitational
radiation.

2. REVIEW OF NEWMAN-PENROSE AND
NEWMAN-UNTI

The starting point for the calculations in this paper
is a set of nonlinear differential equations, derived in
NP and NU, equivalent to the empty-space Einstein
equations with certain coordinate conditions imposed.
The tetrad /#, n*, m#, and /m* was introduced, where m#*
is complex and /* is the complex conjugate of m*.
The tetrad is normalized such that /*n, = —m*m, = 1,
and *l, = n*n, = m*m, = I*m, = n*m, = 0, which
implies that

.1)

A set of quantities called spin coefficients, closely
related to the Ricci rotation coefficients of the tetrad,

g" = I"n" 4 I’'n* — m*m® — m*"m*,
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was then defined as follows?:
k=1, m'l

€ = ('l —m ), p =1 mr,

— 13 A
7= —n,. A,

A= —n, m'm’, o=4§1,n'm — m, m'm), 22)
=1, mm, u= —n,m'm, 2.
— MoV =tV — =4V
= 31,., - = .
B =31, n'm" — m, m'm"), v= —n, mn’,

y = 3, n'n” — m, m*n%), T=1,m'n".

Using the tetrad one can define physical components
of the Weyl tensor (they are called, collectively, v ,)

by

Yo = — Copysl®m'm?,

Y= "‘Caﬂyalanﬁlymd,

Yo = —Cop,smnI'm?, (2.3)
W3 = —Cp,sMnI'n’,

Ya = —Cp,sMnPi'n’.

Without restricting the space one can make several
simplifying tetrad and coordinate assumptions. Since
there always exists a family of null hypersurfaces,
u(x*) = u, (a constant), in any normal hyperbolic
Riemannian space, they could choose /, = u , making
/* tangent to a congruence of null geodesics. It can be
shown® that if one chooses x° = u and x! = r, where
r is an affine parameter along the null geodesics lying
in these null hypersurfaces, then /¥ = 84 and [, = 6,
with x* labeling the geodesics on each hypersurface.
Having /* equal to a gradient and tangent to a null
geodesic, with r an affine parameter, makes® « =
e+ é=0,p=p, and 7 = & + B, and by parallelly
propagating the rest of the tetrad along /* they also
obtained 7# = ¢ — € = 0. To preserve /*n, = 1 and
"m, = 0 in the light of /* = 6} and /, = 49, the most
general forms m* and »* can take are

n* = 8§ + Ud{ + X6}
and m* = wd¥ 4 £6¢, which leads to
g =g%=0, g"= gl = 2(U — wd),
gh = X\ — (¢ + Eiw), gl = _(Eiga' + Sa-sm')'
24

That subset of the NP form of the Einstein field

equations essential for our work is given below, with

the simplifying coordinate and tetrad assumptions
included. Noting that the differential operators are

D = [49/9x* = d]or,
A = n*9/ox* = Ud/or + 8/du + X'0/0x’,

7 Greek (values 0, 1, 2, 3) and small Latin (values 2, 3) indices are
tensor indices, while capital Latin indices (values 0, 1, 2, 3, 4) number
the physical components of the Weyl tensor. Ordinary differentiation
is denoted by a comma or by 9/9x, while covariant differentiation is
indicated by a semicolon. The metric has signature (1, —1, —1, —1).

8 I. Robinson and A. Trautman, Phys. Rev. Letters 4, 431 (1960).
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and
4 = m"0/ox* = wd/or + £9/0x’,
we call an equation “radial” or ‘“‘nonradial” de-
pending on whether or not it contains a D derivative.
We also call those equations which do not arise from
the Bianchi identities ““field equations™ and group the
entire set in the following way. The radial field
equations are
DE' = pkt + oF,
Do = pw + o — (& + f),
DX'= 7§ + 7,
DU=17% + 7o — (y + 7),
Dp = p* 4 04,
Do = 2po + v,,
Dr=71p+ To + y,,
Do = ap + 35,
DB = Bp + ao + yy,
Dy = va + 76 + v,
DA = Ap + uéd,
Dy = pp + Ao + vy,
Dy =7k + T + ys.

(2.5)

The radial and nonradial Bianchi identities are

Dy, — by, = 4py, — doyp,,

Dy, — Sy, = 3py, — 2ap; — Ay,

Dy, — 5’/’2 = 2py; — 24y,

Dy, — 5% = pyy + 2ap; — 3Ay,,

Ayy — Oy, = (4y — Wye — (47 + 2B)y; + 3oy,,

Ay, — by, = vyo + 2y — 2wy, — 37y, + 20y,

Ay, — Oy = 2vyy — 3uy, + (=27 + 28)y; + oy,

Ayy — Oy, = 3vp, — 2y + 4p)ys + (—7 + 4By,
(2.6)

There is also a set of 13 nonradial field equations
which we do not use directly. The complete set is given
in both NP and NU.

The initial data for this set of equations were worked
out in NU. They first assumed that yo(r, 4o, x°) was
given; i.e., they assumed they knew y, on a particular
hypersurface u = #o. In NP the assumption y, =
O(1/r%) was made. In NU the stronger assumption
Yo = yo(to, x)[r* + O(1/r®) was made in order to
specify i, more explicitly.? In integrating the radial
equations (including the radial Bianchi identities) the
“constants” of integration [there is one for each radial

? The precise meaning of the order symbol may be found, for
example, in Ref. 3.
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equation, and that for the p equation is designated as
p°(u, x*), that for the y, equation as y;(u, x°), etc.]
introduced arbitrariness into the solutions. This
arbitrariness included the freedom of specifying
additional initial data. Substitution of the radial
solutions into the nonradial equations put differential
conditions on these arbitrary functions. Between these
conditions and further specialization of the coordi-
nates and tetrad vectors? the other constants of inte-
gration were expressed in terms of ¢°(y, x%),
Yoo, x) + Py(uo, x*) and yi(uo, x?), leaving these
functions, along with y,(r, 4o, x%), as the initial data.
One other free function, P(x?), remained but its
choice represented further fixing of the coordinates x*
once the topology was known (asymptotically).

We assume the topology to be asymptotically
Euclidean. Then the function P(x?) can be fixed in the
following fashion. Choose P(x?) in NU to be P(x*) =
cosh v/v/2, where x? = v and x* = ¢. Then do the
coordinate transformation cos § = tanh ». This will
put the flat-space specialization of our solutions in
null spherical polar coordinates.

The function o(y, x?) specifies the outgoing radi-
ation at infinity and, through the nonradial Bianchi
identities, determines the time development of the
solution off the initial hypersurface u = w,. It turns
out that asymptotic incoming radiation, which
was not considered in NU, is given by w,(r, vo, x%),
which along with y;(#o, x) and y,(to, x°) + P5(to, x°)
also gives the necessary nonradiative initial data of
the space.

We give the constants of integration in terms of the
initial data. These results from NU are needed later:

7/o.=po=,‘}c=xio=ﬂro=0’

U =up = —1)2,

o’ = —f° = —cot 0/2\/2,

£ = —isin 68 = 1/V/2,

A° =65,

w® = (6 4+ 2 cot 85°)/\/2,

ys — P2 = (0° — 5°),0/2 + 3 cot B(0° — 5°)/2

— (¢° = &°) + 6°0°, — 0°5Y,
¥ = —5%/V2 — V2 cot 655,
Vi = —Go-
The initial values of y,, y;, and 5 + P, are initial
data and their subsequent values are derived through
Egs. (2.6).
3. SMALL-PARAMETER PERTURBATION
METHOD

Our perturbation calculation begins with the

flat-space solution of the field equations. To obtain

Q.7
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flat space in our formalism one sets!® ¢°(u, 0),
Wo(r, 4o, 0), p;(uo, 0), and y (uo, 6) equal to zero.
Since we are interested in solutions with asymp-
totically Euclidean topology, we make the choice of
P(x?) indicated in Sec. 2. We can then extract the
metric, the components of the tetrad vectors, and the
spin coefficients for flat space from the asymptotic
solutions of NU. They take the following forms:

0 1 0 0
w_ ! "1 0 0 (3.1)
=l o -y o |V
0 0 0 —csc?o/r®
) . 1
=—1/2, w=0, X=0, &= 1//2r,
2, o ¢ (icscG) War
(3.2)
and
= —1/r, o= — =-—C0t02\/§,
p=—1] p N,

=—12r, c=v=y=A=7=0.

The meaning of the coordinates is clear in the flat-space
case. The future null cones are labeled by x° = u.
Varying r, numerically equal to (x2 + y* + z%?, and
holding the other variables constant defines a straight
line lying in a future null cone. Finally one sets # and
r equal to constants and coordinatizes the resulting
spherical surfaces with spherical polar coordinates 6
and ¢. Flat space in these coordinates is the exact
solution to which we seek perturbative corrections.

Consider Eqs. (2.5) and (2.6). [The nonradial field
equations have served their purpose in providing us
with Egs. (2.7).] These two sets lend themselves to a
perturbation approach. If we assume the y, to be
zero, then the set (2.6) is empty, and Eqs. (2.5) can be
solved for flat space yielding Egs. (3.1) through (3.3).
If one then thinks of the ¢, as a field existing in
flat space, the Bianchi identities, with the flat space
spin coeflicients and tetrad components substituted in
them, can be looked upon as field equations for that
field. Having solved this linearized version of Eqs.
(2.6) for particular “first-order” ¢, , we can then use a
linearized form of Egs. (2.5) to find the corrected spin
coefficients and tetrad variables (i.e., metric). At this
point the y, display their geometrical significance.
We then use the first-order spin coefficients and
tetrad vectors in Egs. (2.6) to obtain the second-order
part of these equations. These can then be solved for
the second-order ¢, . This process could, in principle,
be iterated.

10 The ya must vanish in flat space since the Weyl tensor does.

One could, however, obtain a nonvanishing news function in flat
space by a different choice of coordinates (see Appendix 3 of Ref. 1).
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We now derive equations for the first three steps in
the perturbation scheme described above. The fol-
lowing notation is introduced: Each quantity is
considered to be expandable in a small parameter, e.g.,
p=p+ p+---, where the subscript zero means

0 1
the flat-space value. (These order indicators are
omitted when the context indicates the order of the
quantity involved.) Thus the y, = 0 while the other

zero-order quantities are giveon by Egs. (3.1)-(3.3).
Substituting these expressions into Egs. (2.6) and
collecting first-order terms, we get the following
differential equations for the v, :

1

Oy, [Or + dy,fr = —s'l’o/\/5 r,
Oya[0r + 3ysfr = "'5'/)1/\/5 r,

opfor + 2wl = —BpNar, O
a%/a" + 'PA/’ = "'5%/\/5 r,
and
(20/0u — 9[9ryyy/2 — yof2r = —dyy/N 2,
(20/0u — [3ryp,[2 — pyfr = —Byy/N2 55

(20/3u — 3]2r)ypaf2 — 3yaf2r = —dyyN2r,
(20/8u — 8]0r)py/2 — 2uyfr = — By, /N2 r.

The angular operator d (*“‘thop”) is defined in the
Appendix. If Eqs. (3.4) are integrated and the corre-

sponding (first-order) constants of integration intro-
duced, we get

y— vilrt + (1N2 r3(r*y, dr = 0,
— Y3 + (N2 r)Bfrtp, dr = 0,
— w3frt + (1/V2 r)Bfry, dr = 0,
va— yilr + (1/\/5 rdfy, dr = 0,

(3.6)

which can be substituted into Egs. (3.5) to give
(20/01 — 9/0r)pef2 — wol2r + Byil2 1
— (1/2r*)d8f wor® dr = 0,
(20/3 — 3J0r)p[2 — wpfr + SN2 1t
— (1/2r"Y88fp,rt dr = 0,
(20/3u — 0[ar)psf2 — 3po/2r + dyEN2 1
— (1/2r%33f yyr dr = 0,

(20/0u — 9[orypsf2 — 2yl + OYIN21®
— (1/2r80fyp, dr = 0.

M)

That set of solutions to essentially these integro-
differential equations given in JN corresponds to a
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particular choice of the first-order constants of
integration 3, v;, ¥, ;. In Sec. 5, we find a
broad class of solutions including those of JN.

Assuming we now know the first-order y, we can
calculate the other quantities to first order. Equations
(2.5) can be linearized to give

p=0,
1
6=U—2+lfr W, dr,
PO R
cot §
= & dr,
1 2/2r

ﬂ=_&+lfrlpldrs
1 r
r=a+p, (3.8)
1
cot @
= — d dr,
¥ Zﬁf r r+f1p2 ’
u=lfr1p2dr,
1
1 (_
l=——fadr+ %
1 r
i
=—|— dr
';’ fZ "+J"P3
U=— f(7+y)dr
1
W= (Sm 60°) .z,
1

* (75) (1o o) 7
§= (\/%r)(—iclsc o)fadr'

This completes the derivation of the equations
necessary to find a full, first-order solution.

If we now go back to the Bianchi identities and
collect all the second-order terms, we find that we
obtain, for y,, differential equations like Eqs. (3.4),

2
(3.5), and (3.6), but with driving terms constructed
from the first-order solutions. If the same integrations
and substitutions are done as before, the resulting
equations for the y, are identical to Eqs. (3.6) and

2
(3.7) except that the right-hand sides are now R, R,
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R,, and R,, and D,, D,, D,, and Dj;, respectively,
where

R, = (1/r‘)fr‘((ba/ar + &iojox’ — 4o¢> WP dr,
2 1 1 1/ 1

Ry = (1/r) f [r**(?a/ar + Fojox’ - 2?) v

1
— r‘"’}.%:ldr,
11

Ry = (1/r) f [ﬁ(?a/ar + z;f"a/axf) s (3.9)

- 2r21y)2:| dr,
11
R, = (1/r)f|:r(6)a/ar + E9ox + Za) Vs
2 1 1 1/1
- 3r11p2:| dr,
11
Dy = (—Ua/ar — X%9)oxt + dy — u) ”
2 1 1 1 1/1

+ (ya/axf + wdfor — 47 — 2,3) "
1 1 1 1/1

+ 3oy, + (1/3/2 r)8R,, (3.10)
11 2

etc.

(We do not need D,, D;, or Dy.) We call Egs. (3.6)
and (3.7) the “undriven equations,” and their driven
form the “driven equations.” Solutions of the driven
equations can be varied by adding to them any linear
combination of solutions of the undriven equations.
There are, of course, driven forms of Eqs. (3.8) as well;
however, we do not need them here.

4, TRANSFORMATIONS BETWEEN THE
NULL CONES

The coordinate and tetrad systems introduced in
NP and NU were built around the null hypersurfaces
always present in a normal hyperbolic Riemannian
space. These hypersurfaces were assumed to be
defined by u(x*) = uo, and x° = u introduced a
timelike coordinate labeling the hypersurfaces. There
is, however, an ambiguity in that the coordinate u
could label either the future or the past null cones.
Let us take it to label the future cones. Then there
must exist a coordinate transformation preserving all
the coordinate conditions, but re-expressing everything
in terms of coordinates built around the past null
cones. There must also exist a tetrad transformation,
preserving Eq. (2.1), but giving us a new tetrad
bearing the same relationship to the past null cones
as the old one did to the future null cones. These
transformations can, of course, also be interpreted
as taking us from the past null cones to the future null

R. J. TORRENCE AND A. I. JANIS

cones. We realize that the new u will increase into the
past if the original u increased into the future. The
relationship between the direction of increasing u and
the direction in which the null cones open is built
into the coordinate conditions. In this section we
present a method of finding these transformations for
approximate solutions found by the perturbation
method outlined in the last section.

The starting point is to find the transformation
re-expressing flat space on the “other” cone. Working
with the flat-space metric given by Eq. (3.1), we see
that if u labels the future null cones, then u' =
—u — 2r labels the past null cones. The full coordinate
transformation is

U = —u —2r,

r=r,

0! = 0 (4'1)
¢' =

(This transformation is also an isometry for this
metric, but this is not true in general.) We also wish
to preserve the form of the relations /* = 0%, n* =
o4 + Udk + X% and m* = wd} + &'o#, and find it
necessary to take

W= —2n*,

0 0

= —DI, 4.2)
0 0

Mt = m*.

0 [

The components of the new tetrad vectors in the
primed coordinates (w’, etc.) can be determined by
examining Egs. (4.2) (the components are unchanged
to this order), and the new spin coefficients can be
found by working out the spin coefficient trans-
formations induced by Eqgs. (4.2). For example,

< -1}
it

1. = —2n, mimt =23 = —1[r = —1/r’.
0 0 0 0 00 0
Likewise all the other spin coefficients are unchanged.
The remaining variables, the y, , are zero and remain
so since the space is flat. 0

Suppose we have a solution v, of the linearized
Bianchi identities. It is important to note that these
w4 can be transformed knowing only the zero-order
coordinate and tetrad transformations derived above.
As an example, we have

Po = —Copps PP M® = —4C,p,sn°mPn'm?® = 47,,
1 177 000 1 700 00 1

where the first-order corrections to Egs. (4.1) and
(4.2) lead to (negligible) second-order corrections here.
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Thus we can derive the full set of transformed v, :

Yo = 49y,

1 1

WI = -217)31

1 1

Po = P, (4.3)
1 1

17)3 = _%2/-)'1:

1 1

1;'4 = %'7’0,

1 1

where the v, can be expressed in terms of the primed
variables by taking the inverses of Eqs. (4.1).

Now that we know the ¢, in the primed coordinates,
we can go on and calculate the corresponding first-
order spin coefficients and components of the tetrad
vectors via Egs. (3.8). Since we have preserved every
coordinate and tetrad condition used in deriving
Eqgs. (3.8), they take the same form in the new language
as they did in the old. Thus we can find all the
variables to first order in terms of either coordinate
and tetrad frame.

We can now find the coordinate and tetrad trans-
formations to first order for a given solution, since we
know that solution to first order in both the old and
the new frames. We know that the coordinate trans-
formation must be the flat-space transformation plus
a first-order correction, so we write

U = —u—2r+ €,

rr=r+é€,

0' = 6 + 62, (44)
¢ =¢+ e,

where we now assume axial symmetry for simplicity,
which implies that €%, = 0.
We begin by demanding that

g" = (u'|ox*)(0p'[9x) g% = 0,

g =1, and g* = 0. From these we get, to first
order,

e?0 = §11 + %6?1,
1 1 1 1 0
€0 = 5(-—g +e; — %5,1),
1 4.5)
€= _§12 + 3 — %Y%),

3 13 3
€0~ —g + i€y
From

gu' = (ar’/ax’)(ar'/axp)gap
and
g% = (3r'|x*)(0x" [0xF)g*
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combined with Eqgs. (4.5) we get, to first order,
d 3= — f g dr + Cy(u, 0),
€= —2fg12' dr + Zf[r“z(fgll’ dr) :l dr
1 1 2 (4.6)
+ 21'_1C1(u, 6),2 + C2(u’ 0)’
S =—2 f g™ dr + Cylu, 6).
1
From

g% = (00'/0x")(06’[oxF)g*®,
we get
¢ = —reh + PUE™ + 1) — (@ + 1/r)]
— 2Cy(u, 6) 20 — rColt, 0) -

Putting these ¢ into the transformations for g’ and
g3¥ gives only differential conditions on C,, C,, and
C, which can be integrated to give

Cy =f(w), C,=g(u)cosb + h(u),
Cs = j(u) sin 0.

Substituting back into Egs. (4.5), we obtain further
differential conditions on f, g, A, and j, whose solutions
tells us that the only freedom in the coordinate
transformation is given by

W =—u—2r+(u+2r)dcos + Bcos + C,
r'=r—[A@u + r) + B]cos 0,

0’ =0+ (Au + B) sin O/r + A sin 0,

¢ =¢+ D,

where A, B, C, and D are first-order constants.
However, the transformation with only C # 0 is
simply a time translation, and the one with only
D # 0 is simply a rotation about the axis of sym-
metry. Finally, the 4 and B freedom is a linearization
of the BMS group! with «(f) = Bcosf and A4
identified with ». Thus B and A4 correspond to a
translation and a Lorentz transformation, each along
the axis of symmetry, respectively. Therefore the
constants of integration contain nothing of interest
and can be set equal to zero leaving

1

&€ = —2fgu’ dr — 2€',

€ = —rey + 1P + 1) — (@ + 1),

& = —2fg12’ dr + 2fr—2(fgll’ dr) dr,
1 1 2

€= —2fg13' dr.

1

@.7)

Now that we know the coordinate transformation,
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i.e., the €#, we must find the associated tetrad trans-
formation. We define
IF= L+ (L, — 2)n* + Lym* + Lgw*,
= (N, — PI* + Non* + Nym* + Nym#,
m* = Myl* + Myn* + (1 + Mpm* + Myn*,
where we wish to know the L’s, N’s, and M’s to
first order. Transforming to the primed coordinates,
we demand that [+ = o4, A*" = ¢ + 0’04 + Xvén,
and M = @'6* + E¥8*, and we find, after some
manipulation, that
L=0, Ly=¢",
1 1

L= (X2 +e— %ei) / &+ (g13' + xa) / £,
1 1 0 1 1 0
(4.9)
Ny=—}, N, =0, (4.10)
1 1

- (,?2' + ,geg) /za,tz + (Xs' + ;e?,) / 283,
1 0 1 0
and

M, = %(524’2 - 2w),

1 1

M, = 8 + 26, — 25,
1

(4.8)

2r __ g2 3 __ g3 2 3 (411)
M3=£ E+£ 5"%‘,22—5_6'2,
1 2£2 253 288
_ 521 — 52 531 - 5_52_
Me="0m 25 —dat 288

Now that we know the transformations to first
order, we assume we have solved the driven integro-
differential equations corresponding to (3.7) for the
second-order v, and do a transformation to find the
second-order ¢, . Using Eqs. (2.3), (4.8), and (4.9)-
(4.11) we can derive

Po =49, + (2M3 - L2)4V_’4 + (2M1 - L3)4'I’3’

2 2 1 1)1 1 1)1
§1= 25 + 4Ny + (2L2 —2M, + 4N1) %

2 2 11 1 1 1/1

- 2Mp, + (2L3 - 2M1) Py — (Ls + 2M1) Ve,
101 1 1 /1 1 1/
= P, + (Mz - 2N3)¢3
2 1 1 1

1 %ifi) ¢1 ’
1

+ (Ms—%L2—2N1+M3)1I_’2+ (M
1 1 1 1 /1 1

Ps = —3¥, + (2N3 - ‘%M)'l—’ + (—Ns“‘ %Mz)fl’z
2 1 1 1 /)1

+ (2N1+1L2

Fo= 10+ (w N)f+(wz—Na)?1.
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5. THE LINEAR THEORY
A. Advanced Solutions

Because of their physical significance one generally
studies retarded solutions rather than advanced
solutions, and in our case we have an incentive to
look at the retarded solutions first in that they have
already been worked out in JN. However, it turns out
to be simpler to start with the advanced solutions,
and we then obtain an improved form of the retarded
solutions by doing a time reversal.

Suppose we look for solutions of Egs. (3.7) with
the simplifying property y; =y, =y, =y, =0
(which excludes the JN solutions). We look for
separable solutions of the form

Yo = Ou0, p)o(u, 1), 1 = 046, 9w, 1),
ve = 0,0, 9)fe(w, 1), vs = 0s(0, )fs(w, 1), (5.1)
¥a = 0,00, 9)fu(w, r).
Substituting these assumptions into Egs. (3.7), using

the last of Eqs. (3.6), and using 33, ¥,, = —(/ + 5) x
(! — s+ 1),7,,, (see Appendix), we find that

Yo = lzfozm 2Yim >
Y = zfllm 1Yims
im

2L,
P2 = Zfztm 0Yim» (5.2)
" —l1<m< +1,
Y3 = %fsm ~1Yim>
Yy = szfum —2Yim»
are solutions if
Wform/0u — $0fum/OF — foim/2r
+ [ + 2 = 1)[2r°)f gy dr = 0,
Of 1m0 — 30f11m/OF — frimlT
+ [0 + D2l ry dr = O,
tmft — 1fuinfOF — Huunf2r 9
+ (1 + D27 rfyr dr = 0,
W sim/ Ot — 30f51m/Or — 2gym/T
+ [0 + 2)(1 — D2 fyy dr = 0,
and
Jum = U2 = DU + 2)f faymdr.  (5.4)

In order to derive a class of radiative solutions we
note the general result that for K = — 1, 0, positive
integer,

rEOERF(r)[ork+ dr = TR f(Rr1fork, (5.5)

which can be proven by K + 1 integrations by parts.
Using this result, we find that Eqgs. (5.3) and Eq. (5.4)
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are satisfied by!
Joim = r'72D"a(—u — 2r)[r1],
Jum = rD Y a(—u — 2n)]r'],
Sorm = 2D a(—u — 2r)[ri+Y],
Jaim = r'2 D a(—u — 2r)[r'+?],
JSum = r D2 a(—u — 2r)[r+3),

where D = 0/dr. Using these results the linear
theory Egs. (3.4) and (3.5) are satisfied by

= lz 2K—2Almrl_2Dz+2(dZm/rl_l)zYlm )
1/"1 = Z \/5 K—lAlmrl—.zDHl(iilm/rl)lYlm’ l 2 27
zAlm _2D(atm/r +1)0 im»
E(I/JZ)KlAmr‘ DNy 1)1 Y,

—1<m< +1
= LZ (%)KzAzmrl_le_z(dzm/rHa)—zYlm s

1>2 (5.6)

(5.7

where
K, =10+ pYI =P, i = apn(~u = 20),
and the 4,, are arbitrary complex constants. The

interpretation of these solutions as representing
advanced radiation follows from the appearance of an
arbitrary function whose argument is constant on the
past null cones (if u labels future null cones). Cal-
culation of the other first-order quantities (spin
coefficients, etc.) is done through Egs. (3.8). The r
integrations can be explicitly carried out despite the
arbitrary function of —u — 2r that is present. [This is
related to the fact that the v, can be put in the
convenient total-differential form (5.7).] The initial
data for these solutions take an interesting form.
Since y; = y, = 0, Eqs. (2.7) assure us that we have
no arbitrary retarded news function. On the other
hand, the initial data include yy(r, 0, ¢, uo) and, as
can be seen from the first of Eqgs. (5.7), this tells us the
arbitrary function 4, ,(—u — 2r) over a semi-infinite
range of its argument (—uo to c0). (The rest of this
function describes radiation which reached r =0
prior to u = uo.) Thus the incoming radiation is
“sampled” by the forward null cone, u = u,, and in
this way its prescription is included among the initial

data.
B. Retarded Solutions

Suppose one has a mathematical solution of a
physical theory corresponding to a particular physical
situation. If the theory is invariant under time
reversal (as in general relativity), one can easily derive
a mathematical solution corresponding to the time-

11 This simple form for the solutions was pointed out by E. Couch.
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reversed physical situation. One simply does the
coordinate transformation ¢’ = —¢ and then ignores
the prime on ¢', i.e. interprets ¢’ as increasing into the
future as did the original ¢. In using the above co-
ordinate transformation method to derive, in null
coordinates, the retarded gravitational radiation
solutions from the advanced gravitational radiation
solutions, there is an added complication. Under
u' = —u and the re-interpretation of #’ as increasing
into the future as did u, the new u (replacing u') labels
null cones opening into the past if the original u
labeled null cones opening into the future. In order to
preserve all characteristics of the reference frame in
which we describe the different physical situations we
must then change null cones; that is, we must do both
the transformation ¥’ = —u and the transformation
(in the example of flat space) u" =u' —2r' =
—u — 2r. Now the new coordinate u (replacing u")
increases into the future and labels null cones opening
into the future, and is in fact indistinguishable from
the original coordinate u. It is clear that the trans-
formations derived in Sec. 4 are exactly the ones
needed here to change null cones. If we subject the
advanced radiation solutions just derived to the
combination of tetrad and coordinate transformations
derived in Sec. 4 along with the corresponding
transformation of the y, also derived there and then
drop all primes and tildes, we will obtain the retarded
radiation solutions with the usual coordinate and
tetrad conditions holding. This argument is not
restricted to the linear theory. If one knows the
transformations to order n, one can find the new y, to
order n 4+ 1, and can then use Eqs. (3.8) (with the
proper driving terms) to calculate all other quantities
to order n + 1.

It is quite simple to apply the above procedure to
the linear theory. Since we are only working with the
., we need only the flat-space transformations.

1
Thus we subject the ¢, of Eqgs. (5.7) to the trans-
1

formation ' = —u—2r, r'=r, ' =0, ¢' = ¢,

and 9o = 49, 1 = =23, P = P5, P3 = (— 89y,
and 9, = (}P¥,, and then drop primes and tildes.

The resulting retarded solutions are of the form
o = 2 2KeR,, 7 2 d7 ¥ by /1D Y, 122,

v = f V2 KiRpyt ™2 d Xy, Vi

Y2 = lg Ryt A by 1 )oYim, —1<m << +1,
¥a = :ﬁn(l/\/i)K—lRmrl-z 4+ binfr)-1Yim

= ;(1/2)K_2R,mr"2 A" byr )2 Yim (5:8)
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where d = —2d/0u + 9/0r, b, = b,,,(4), and the R,,,

are arbitrary complex constants. The solutions (5.8)
can be expanded into finite series in 1/r, namely,

=3 2K Ry (~ 1)

n=0 ml

. (I—2-—n)
2T bim
X ( n! Kn+2)( r5:_n 2Ylm’

Z > V2 KRy, (—D)™

n=0 mi
~ (I—1—n)
27 2 blm
X ( l Kn-H) e )1Yzm’

2 Z (VDK Ry, (=D

- (41— n)
21+1— b n
e o
1+2 .
Y4 = Z ):l(%)Kszm(—l)”
n=0m

) d+2-n
P bim
x (S K (—-———)Y

where l():(,:, = 0Kb,,/ou¥. These are the retarded
solutions first derived in JN. The rederivation here
yields two improvements. The use of the operator d
has allowed us to drop the JN assumption of axial
symmetry. In addition, by using the time-reversal
method, we have obtained the general coefficient in
the 1/r expansion. The JN general coefficients were
more complicated and did not cover the leading term
of each series.

6. SECOND-ORDER CALCULATIONS

A small-parameter approximation nethod has been
presented, and we make the usual assumption that
the approximation converges. In this section we show
that nonlinear (at least second-order) calculations can
in fact be done in practice. We consider an axially
symmetric linear solution consisting of an imploding
quadrupole wave [moment d = a(-—u — 2r)) and an
exploding quadrupole wave [moment & = b(u)], with
a mass —m at their common focus. We calculate part
of the second-order correction to this linear solution
and give it in a form with all r integrations explicitly

R. J. TORRENCE AND A. I. JANIS

carried out despite the arbitrary function of u + 2r
present. Setting / =2 and m = 0 in Eqgs. (5.7) and
(5.8) (with convenient choices for A4,, and R;,) and
adding on the Schwarzschild solution expressed in
this language ¢ we get

3 2pP2
o= (3b L4424 e +—— —”) (iz),
1 rt rd 2r® 3

2r° r
3b 3 & 33 a( 2J2P}
h (,’21"‘-I—r~"’4_r2_i~r3 2rt + )( 3 )’
b 3b 3b & 34 34
yo = (%+~+—5+%+—“+—§)(2P2)+(%)Po,
1 r r r 14 r r r
2b 26, 3b 26 4 24\ (P}
Yo = (3r2+ Sttt r5)(\/§)’
2b  4b 26 2b b 4\ /(P
==+ =+ 2+ 24+ 2 52, (61
1504 (r+r2+r3+r4+r5+r5)(4) 6.1)

where a dot signifies differentiation with respect to
the argument, be it u or —u — 2r, and the P} are the
associated Legendre polynomials. One completes the
first-order solution using Eqs. (3.8) and

2guv = [l — mlumy) 12

We can now go on to the second-order correction,
where we restrict our attention to y,. In order to
solve the first of the driven equations analogous to
Eqgs. (3.7) for y,, we must know D, and y;. The

2 2 2
first is obtained directly from Eq. (3.10). The
following argument gives us y]. Since we give

2
0°=0 as initial data Eqs. (2.7) tell us that

2
y; = 9, = 0. An inspection of the leading terms of
2 2

Dz and D, then enables us to evaluate v, and 1p°.12
2
The effective driving term of the equation for 1p0 is

then
D, = 12)0 - 61,;:;’/\/2 re, (6.2)
It is convenient to write D, in five parts, that is

Dy = Dy(R X R) + Dy(R x A)
2 2

2

+ Dy(4 x A) + Dy(R x m) + Dy(4 x m), (6.3)

where Dy(R X A), for example, is that part of D,
bilinear in b(x) and a(—u — 2r). We restrict our
attention now to Dy(R x R), Dy(R x A), and
Do(R x m). These quantities have been evaluated!?
and the first of the driven form of Eqs. (3.7) solved
with these driving terms. We give here the solutions

12 For these results see R. J. Torrence, thesis, University of Pitts-
burgh (1965).
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in the three corresponding pieces
Yo(R X R), wo(R x m), and (R x 4):

poR X R) = [(2f)3"b du +§deu)/7r5

+ 30bb/7 + 35bb/7r8]P§

+ [(-3[5’1‘» du — 2ffdu)/35r5

+ (—4f5bdu—3U}§Bdudu—2ﬁfdudu)/5r6

+ (60bb— 105fb2‘;du—7oji)'bdu —ssj bbdu du

- 42[![55 dududu — 28-” fdudu du) /35r7

+ 2bb/r°]Pi,

where

(6.4)

and where all integrals are evaluated from wo (the
initial hypersurface) to u,

Ha (— _"1) EB + éoctv(")/’”*‘} 6.5)

2
where
N

Cxw =TI f fbdu““

with dg=1land 4, =2/(n+2)—§(n+5),n 21,
and

'/’o(R X A)

+ bQd [r® + 14G]r* + 52d[r® + 1204/r®
+ 165d/r" + 105a/r®)/7
+ l._7(4'5"/r2 + 65]r3 + 6¢'i:/r4 + 35/1'5)/7

- lOa/r — 453)2r° — 63a/2r - 21a/r7)/35]P§.
(6.6)
This completes our explicit second-order calculations.
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7. CONCLUSION

We wish to discuss the usefulness of the method
outlined in this paper. In Sec. 6 we have calculated
only a fragment of the second-order y,, namely
YR X R), wo(R X m), and (R X A). It is clear
however that the other y,(R X R), y,(R x m), and
(R X A) can be obtained from Egs. (3.6) with the
driving terms given by Eqgs. (3.9). That the r inte-
grations in Eqs. (3.6) and (3.9) can be done is certain
since Eqs. (3.5) would otherwise be inconsistent.
Consider, for example, the driven equation corre-
sponding to the first of Eqs. (3.5). It enables us to
solve for the r dependence of '!pl in terms of %,

(20/0u — a/ar)%, and a drlvmg term bllmear in
first-order quantmes. In view of the form of y, which
2
we have just given, y, must also be free of r inte-
2

grations, and the same argument applies to ,,

2
va, and ;. The 9,(4 X A) and y,(m X A4) might
2

2

be very difficult to solve for directly; however, we
know they are simply the time-reverse solutions
corresponding to the ¢, (R X R) and the »,(R X m).
Thus the transformations of Sec. 4 can be used to
find the p, (4 X A4) and y,(m X A). [One encounters
the r integrations of Egs. (4.7), but these can again
be carried out.'?] Thus we can obtain the full y, . It

2

is plausible but not certain that the other second-order
quantities can be found. We need the second-order
form of Eqs. (3.8), and we must be able to do the r
integrations indicated by these equations. This was
possible in first order where many of the integrations
were precisely those contained in Egs. (3.7), and it is
plausible that the pattern will continue into the second
order. In any case, the y, alone are valuable. (It
should be noted that the above remarks on r inte-
grations are only necessary when advanced solutions
are involved; with pure retarded solutions of any
order, our integrands are always finite series in 1/r,
and r integrations pose no problem.)

Thus the usefulness of the method presented is not
vitiated by calculational impossibilities. The cal-
culations are long, but when motivated by an explicit
question one could work out the exact second-order
solution. (It should be emphasized that no asymp-
totic approximation has been made.) It is the formu-
lation of questions suited to our approximation
scheme and choice of coordinates which poses
problems.

A few interesting observations can be made despite
the incompleteness of our second-order corrections.
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Clearly our second-order solutions could be modified
by adding to them second-order homogeneous
solutions. These homogeneous solutions are formally
indistinguishable from the linearized solutions given
by Egs. (5.6) and (5.8); their introduction would
therefore introduce second-order news functions in no
way determined by the first-order initial data. This
flexibility is not surprising since the entire news
function is initial data. However, by imposing extra
conditions on the solution, this arbitrariness can be
decreased. It has been suggested® that the (1/r5)PZ
part of i, should be singled out as the quadrupole
moment M, of the solution. We see from an
examination of y,(R x R) that, if we give M, as part
1

of the initial data, there is a correction M,. We can
2
obviously make M, = 0 by adding a second-order
2

retarded quadrupole solution with the proper news
function. This can be interpreted as telling us that
source activity characterized by M, # 0 with

1
M, = 0 results in asymptotic outgoing second-order

2

radiation. If, on the other hand, we insist that there
be no outgoing second-order radiation at infinity,
then the source must have just that second-order
behavior implicit in Eq. (6.4).

A similar interpretation can be applied to y,(R X m).
Once again we have, from Eq. (6.4), a second-order
correction to the quadrupole moment (in this case it
is proportional to m). Adding the right second-order
news function to the initial data will cancel the
correction to the moment. One could argue from this
that if a first-order spherically symmetric source
undertakes the emission of first-order quadrupole
radiation, it will simultaneously develop a second-
order quadrupole moment. If it is to remain spheri-
cally symmetric it must radiate quadrupole radiation
in second order as well.

The above interpretations should probably not be
taken too seriously; however, they do indicate the
potential value of the method. Two well-known
results are also consistent with our solutions. The
evaluation of ¢, described in Sec. 6 gives us the
radiation-induced mass loss first derived by Bondi.!
In addition, the fact that y,(R X R) is missing a term
proportional to P}/r® is a direct consequence of the
recently discovered conservation laws of Newman
and Penrose.!®> One question of particular interest
whose investigation may be aided by extension of this
work concerns ““backscattering.” Can we, by imposing
reasonable restrictions on our solutions, discover a

13 E, Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).
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necessary relationship between, for example, a first-
order advanced news function and a second-order
retarded news function? This question is being
actively investigated.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor E. T. Newman
and Dr. W. E. Couch for many useful discussions and

suggestions.
APPENDIX

In this Appendix, we give a brief summary of some
useful notation introduced by Newman and Penrose.!?

In flat space, a quantity # is said to have spin
weight s if the tetrad transformation m*’ = e'¥m#
induces the transformation %’ = e*¥y. Since in
linearized gravitational theory the y, are defined with
respect to the flat-space tetrad, we may think of the
4 as a spin-weighted field in a flat-space background.
It follows from their definitions (2.3) that the ¢, have
spin weights 2 — A. The operator thop, denoted by 0,
is then defined by

= —(sin 6)8( + ———) [(sin 0)n), (A1)
where s is the spin weight of . We also define
0 i
D = — —sf = - 6)®, A2
7 = —(sin 0) (aa - )[(sm yal. (A2)

These definitions permit the introduction of thop
beginning with Eqs. (3.4).

Spin-weighted spherical harmonics ,7Y;,, are
defined by
_ ]
[(—’—SX} Y,  0<s<l,
(I + 9!
stim =
(I+9)M% <,
—1) Y, -l <0,
( )[(I_S)J <s<
(A3)

where the Y, = Y;,, are the ordinary spherical
harmonics and the ,Y,,, are of spin weight 5. The
+ Y1, form a complete set for quantities of spin weight
s, but, more important for our purposes, they satisfy

63 Ylm = [(l - S)(l + s + 1)]%34-1 Ylm’

- (A4)
3 Yim=—[U+ ) — s+ D}, 1 1,

from which it follows that
563 Yo=—U—=5({+s+1),7,,. (A5)

It is this last relation that is used in obtaining Eqgs.
5.2).
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Starting with the vector (or axial vector) currents j* and the momentum operators PY, we define the
canonical operator j, such that instead of the four covariantly transforming components of j, we have a
scalar j° and three other components j undergoing Wigner rotations under Lorentz transformations.

We first give a construction of ]~ explicitly in terms of j and P. But, since the transformation properties
are not quite the most convenient ones, a subsequent generalized definition, leading to a convenient
canonical parametrization of the matrix elements of j, is introduced. We then study the physical signi-
ficances of the canonical form factors thus obtained. For vector currents j* the transformation properties
correspond to a separation of the physical charge (j*) and magnetic (§) form factors in any frame (and not
only in Breit frame as for /). For nonconserved axial currents we relate the matrix elements of j°4 with
mass-difference effects and express the partial conservation condition in terms of the canonical form
factors. We then study in detail the application of our formalism to the limiting case of infinite momentum
and small momentum-exchange, as often introduced in the study of current algebras. Next we give
explicitly the canonical form factors for photoproduction processes. In the last section we study the
possibility of constructing a canonical spin operator directly in terms of the vector and axial vector
charges and the consequences for the “inner orbital” contribution to be added to obtain the total spin
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of a composite particle. Some useful formulas are collected in Appendixes 4 and B.

1. INTRODUCTION AND DEFINITIONS

N our previous studies! of various aspects of the
representations of the Poincaré group and, in par-
ticular, those of the relativistic properties of spin, we
saw how directly “Wigner rotations” are related to
physical magnitudes.

Here we try to apply this lesson in a field theoretic
context, by relating to vector (and axial vector) cur-
rents certain modified operators (defined below)
which lead us directly to the desired transformation
properties. In this article we restrict ourselves to the
physically important case of vector currents and do
not consider operators of more general spinorial or
tensorial transformation properties.

In quantum mechanics, for a given irreducible
representation [m,s] of the Poincaré group, the
Pauli-Lubanski 4-vector operator w is related to the
canonical (or “physical’’) spin S through the momen-
tum operators P* (for m > 0) as follows:

Apy - ofm = (0,8), (1.1)
where
_ P+ BOP+R) | ,pos (12
Apy =1 G+ Tker (1.2)
with

P=P-(P)t K=(1,0, Ay P=K
Under Lorentz transformation, (S) undergoes a Wigner

1 A. Chakrabarti, (a) J. Math. Phys. 7, 949 (1966); (b) Nuovo
Cimento 43A, 576 (1966). These two contain references to our
previous articles and other relevant works.

rotation Ry, about the same axis as the initial momen-
tum p. [For details and notations see Appendix A
of Ref. 1(b).] The transition to the case (m = 0) is
discussed in Ref. 1(a).

Suppose now that we consider a field theoretic
vector (or axial vector) current operator j(x) and
introduce the operator

J(x) = (A J(x) + j(x) - Ad)s (1.3)

where we have symmetrized, since, unlike w*, j*(x)

does not commute with P°. The action of this operator

Jj(x) is well-defined in terms of those of j and P, for all
states of nonzero total mass. We have

J(x) = (P j(x) + h.c), (1.4)

J) = j(x) — HIPI(L + POKP - j(x) + j°(x)) +h.c},

(1.5)

where the terms h.c. are obtained by transposing the
P*¥’s to the right.
Considering a Lorentz transformation operator
U(A) such that
UN)UAY T = A j(x) (" =A-x), (1.6)
UA)PUA) ™ = A - P, (L.7)
we obtain, by definition,

UM Jx)UA)™ = (Ap) - A - Aa1.)7J(x) + hee.
(1.8)
Equation (1.8) has the following content. While °(x)
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transforms [as is evident from (1.4)] as a scalar, ]7(x)
is multiplied by a rotation matrix Rj;}(A, P) involving
the operator £ (and further, the product is to be
symmetrized).

The Wigner rotation matrices Ry (A, p), obtained
on replacing the operators P* by some momentum
eigenvalues p*, are given explicitly in Ref. 1(b).

Here we may mention briefly that when A is a
rotation, Ry-(A, p) reduces to the same rotation; and
when A is a pure Lorentz transformation, Ry (A, p)
denotes a rotation around the axis u x u”, where

A-(LO)=u", Al:-p=u,
pP=u=AA1-F=Au
The angle of rotation is given by

A+ u’+u®+u
(1 + w1 + )1 + u™)

Comparing (1.4) and (1.5) with (1.1), we notice
the following main differences.

First, j° is not zero identically. (We discuss the
physical significance of this scalar in a following
section.) Secondly, the noncommutativity of j%, and
PP has the consequence that when we consider the
matrix elements of ] between initial and final states
[p)¢s |p"), such that p #« §’, then U(A) leads to the
form

(1.9

sin w = juxuw], (1.10)

HR(A, P + RGHA, B)) §(A - %), (L11)

Of course, in considering expectation values for
the same momentum eigenstate of one particle, or,
more generally, for states belonging to the same
eigenvalues of the operators P* (u =0,+--,3) (of
which p’ = p, m" = m is a particular case), these two
matrices coincide and we do have a simple Wigner
rotation. And in fact, it may be said that, in the case
of transition matrix elements between states of
different mass and momenta, we cannot a priori expect
particularly simple transformation properties.

However, formally more convenient properties can
be obtained by modifying the definition (1.3) as
follows.

Let us now define the operator f(x) [instead of as in
(1.3)] through the relation

(p', 535 [m’, '11 (jx) |p, 535 [m, s])

= Ay - (P's3; [m', $°1]§(x) [p, 55 [m, s]),  (1.12)
where
k=@+p)p+pt
and
Ap -k =(1,0). (1.13)

This definition corresponds to the formalism of
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Cheskov and Shirokov.? (See also the subsequent
remarks in this section about their parametrization.)

1t is to be noted that now we can no longer express
J(x) explicitly in terms of the operators j(x) and P, but
have to define j(x) simply by defining all the matrix
elements between momentum eigenstates forming a
complete basis. The matrix elements are all well-
defined {as long as those of j(x) and P are so] if we
exclude states such that

p+pr=0.

Such a case can arise only when we consider initial
and final states of zero-mass particles only, with
collinear momenta. As for vacuum state expectation
values, if we adopt the convention of considering
the limiting processes p — 0 first and then m — 0,
then

(0]/10) = (0} 7 10),

the right-hand side vanishes if an ordered form is im-
plied. Since, however, we are interested in cases where
atleast one positive mass particle is involved, the above
formal difficulties are not present.

As to the transformation property, we now have,
as a consequence of (1.12),

Py ssl (U J)UAYT) p, s5)
= (A - A A1) ™ - (P, 83l J(¥) |p, s5)-

Thus we now have our scalar (j% and three other

components (j) undergoing spinlike Wigner rotations.
Again from (1.12) we have

(1.14)

=P, Sé ~ P, Ss . =P, Sé : P, S3
<[m', 1 f(")’ [m, s1> = <[m', s] ’("), [m, 51/
(1.15)

Thus we can always establish a direct connection with
the usual covariant formalism. But in fact the equality
(1.15) can be generalized. Since the spin indices Sj,
S, are always taken to refer to the projections of the
“canonical spin operator” (1.1), we have for any pure
Lorentz transformation A, collinear to p,

<_P’ S:;l ](0) |P9 S3> = <_"P: s:*lll j(O) Ips S3>

= (p”, s3] j(0) Ip”", s3), (1.16)

where

A (0 + md)Y, p) =p’,
A+ mDE, —p)=p", (L.17a)

mCheskov and Ju. M. Shirokov, (a) Nucl. Phys. 49, 108

(1963); (b) Zh. Eksperim. i Teor. Fiz. 44, 1982 (1963) [English
transl.: Soviet Phys.—JETP 17, 1333 (1963)] (Sec. 6, in particular).
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all the 3-momenta being collinear and the covariant
normalization

(P, 53| Py s3> = 2p"0(p’ — P)Bssss
being implied.
As a particular case, we have

(—3K, s3] J(O) |3k, s5) = (—13k, s3] j(0) 3K, s3)

(1.17b)

= (0, s3] j(0) |7k, s3), (1.18)
where
n = (1/2m)[(3K* + m'»? + (Ik* + m»i]. (1.19)
Putting
—¢*=(p' — py
= [(1k® + M)} — (3k® + m)IP — k2, (1.20)
we have
[¢* + (m' — m)?]lg® + (m' + m)?]
ke = [g? + 2 (nq1'2 Ty (2
= q2, for m' = m, (121.b)

For m’ # m, k? # g2, but [as is besides evident from
(1.21)] &2 is still invariant for the trivial reason that
it is defined to be the square of the 3-momentum ex-
change in the Breit frame and since k can differ at
most by a rotation from its previous value when we
come back to the Breit frame after arbitrary inter-
mediate transformations.

Let us now develop the matrix element on the
extreme right-hand side of (1.18), using the following
notations:

jo = jlo, (1.22)

1 i 2

i=r =7

[It is implied henceforth that we have x = (0, 0, 0, 0)
as argument.]

Developing |2k, S;) in a series of products of spin
and angular momentum eigenstates and using the
standard CG coupling coefficients, we obtain (taking
account of the transformation properties of j* and j*
and noting that at left (0, S;| can have only zero
orbital angular momentum),

, sélf(O) Ik, s3) %

S (- )M( o 1) (ss5, LM | s's3)

x FO L K)YMK) (M =s; —

{0, Sa| 12) |7k, s3) ;
_1\M sret

-3 )3%( 1) ( l)(sss,LMma

X (j'js, Im | s'sF ' (k3 Yz (k)
(m=0,£1; jg=1s3—m, M =j;—s;) (124b)

(1.23)

(2 L7

sy), (1.24a)
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(we do not indicate explicitly the dependence of the
F’s on the masses and other possible internal quantum
numbers).

In the above definitions we have introduced the
solid spherical harmonics [Y3/(k) = |k|Z Y}/(k)]. This
amounts merely to a particular convention as regards
the normalization of the form factors (k%) [= F(g?),
say, due to (1.21)], an invariant factor {see (1.21)]
being extracted explicitly from the coefficient. [Intro-
ducing, for example, Y}(nk) instead of Y)(k), we
again obtain a modified invariant factor, since 7 is a
function of k% and hence of ¢2.]

Now from (1.16), (1.18), we note that the same
expressions (1.24a), (1.24b) hold also for the Breit frame
matrix elements of j and j—and in fact for j after any
collinear pure Lorentz transformation, k being always
defined to be the momentum obtained on reducing to
the Breit frame through a pure Lorentz transformation.

It is, of course, possible to couple the angular
momenta involved in (1.24b) in different ways. For
example, using the formula (6.26) of Ref. 3, p. 95,
we can rewrite (1.24b) as

<_%k9 sa| j:}r:) |2ka 53)
_@mt 5 = 1l
TP EiQRL+ 1)

g (1)

X Sy JLi kz)‘yzlu(k) (.]3 = Sé - 83)’

3 (LM, 1m Ijja)(ssa,jja I s's3)
(1.25)

where the new form factors are linear combinations
of the ¥ ®"s involving 6 — j symbols.

This is the form proposed in Ref. 2 (see, however,
Ref. 4) and as compared to (1.24b) it hasthe meritthat
the matrix elements of the divergence (9,;*) assume
a simpler form (see Appendix A), leading to a more
direct physical significance of the form factors F.
For this reason we adopt (1.25).

Since we are dealing with states labeled with
canonical spin indices, in an arbitrary frame we have
[as a consequence of (1.14)]

P53l Jlp, s = 3 DA, 5YDL(A, B)

o305’
X (—1k, 03] [k, oy),

AP +p)={¢ +piho),
@, p) 2> (—1k, 1k).

3 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

4 In comparing (1.25) with Eq. (47) of Ref. 2 it should be noted
that apart from other differences of convention we have a negative
sign of M(Y ;M) instead of Y, of Ref. 2. A positive sign would
lead to quite incorrect results. In fact, though different couplings are
possible, we should be careful about the corresponding sign of M.
For example, it is indeed possible to have Y ¥ [or rather Y 7 #(—k)*]
if, instead of (1.18), we start equwalently from (—nk, s:,] 10, S,
corresponding to the coupling (S”s; , LM |j”j3) (Ssg, 1m | jj3).

(1.26)
where
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The corresponding matrix elements of the covariant
vector operator are

(P Sa' .] |P’53> = z ﬂ);,ss L: ﬁ’)ﬁ)g?ss(A’ ﬁ)

030y
X (A_ : <_%ks S:’ll J |%k’ 53>)-

If j is taken to be a pure vector or pseudo-vector
current, j, as may easily be verified, will have the same
behavior under space and time reversals. Thus in the
series (1.24a),(1.25) only odd or even harmonics appear,
depending on the intrinsic parities of the initial and
final states (assuming them to be pure parity states).

Time-reversal invariance leads to the usual reality
conditions on the form factors. For conserved cur-
rents, we have again further restrictions. Some
examples are discussed in Appendix A,

We have already noted that if we want to construct
the operators explicitly in terms of j* and P* [as in
(1.4), (1.5)], we cannot have the properties corre-
sponding to (1.12). Considering, however, matrix
elements between states of equal mass, we have in the
Breit frame [denoting the right-hand side of (1.3) by
Jj’ in order to distinguish it from (1.12)], from (1.4),

(1.5),
i s K "o
<_%k’ 83' J © i%k, sa> = _n—l <—%k, sal ]0 |%k’ 33>,

(1.27)

(1.28)
(—3k, 55 7' |3k, s5) ,
VR ()
= (—1k, 53| j Am + kY) 12K, s3)
[k = (3K* + m??}]. (1.29)

Thus we see that for comserved currents, we have
effectively the same equality as (1.16) between the
matrix elements of j' and j. Only there is the extra
factor k%m in (1.28). Hence, in particular, the electro-
magnetic form factors, as studied in Sec. 2, have a
simple interpretation in terms of j’ also. For the
general cases, j' leads to more complicated behavior.
As for the matrix elements of j' between states of the
same mass and momenta, they are just equal to the
corresponding rest frame matrix elements of j (or j).
In Sec. 5 we again consider an explicit construction
(for the canonical spin operator) in terms of the
covariant current and momentum operators.

2. COMPARISON WITH THE COVARIANT
FORMALISM AND PHYSICAL
INTERPRETATIONS

A. Nucleon Electromagnetic Form Factors

In order to compare our formalism with more
familiar ones, let us start by considering the simple

A. CHAKRABARTI

but important case of nucleon electromagnetic form

factors.

Fors’ = s = }, we have [from (1.24, 1.25)], utilizing
the parity restrictions (and the covariant normaliza-
tion) for the vector current j°,

— 1k, s3] JU7 13K, 59y = [1/Qm) 1T £3 oK), e,

<ﬂmﬁ?M&

(477) (=n¥ 2
k
(2 )3 \/3 i‘i‘,lo( )
+ (1M7 Im l 15:; - s3)(%s:,ii lsi; — S3 | %Sé)
x FRulO ¥ w0, 22)
When we have the same particle (such as a nucleon)
as initial and final states (m’ = m and similarly for
other internal quantum numbers), the combined
restrictions due to Hermiticity and T invariance lead
to

2.0

(1)11

[(AM, 1m | 00)4,,,

F i) = 0. 23)
In this particular case, this restriction coincides with
that due to the conservation condition

koy(Jia — k(T — koGl = 0. (24)

(See Appendix A for more general considerations on
this point for arbitrary spin.)

Thus for
s3=s3= +}
we have
¥ 1 a0l 2 ~(1)v
A = Qﬂwﬁﬂx4n$n=m

25
(= s 0Ok

Qn? 6
Now, in order to compare, let the covariant form
factors be defined [corresponding to the covariant
normalization (1.17b)] as

<P', s3| ju |P, 53>
_ 1
@2my?

f‘ss'(P)(F1(qz)7u + iFZ(qz)o'uqu)usg(p)

(g=p"—p. 26
For the purpose of explicit calculations we can write
the solutions corresponding to the canonical spin
indices (s, 53) in a rather symmetrical form as

m+ p° + p*
1 p +ip’
u -— s
A 2[m(p® + mylt |m + p° ~ P’
—p —i
P e
P —0 'P 3
1 m4+p’—p
t_| - . s
(r) 2[m(p° n m)]% _pl + lp2
m + po + p3
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where we have utilized the following representation
of the y matrices,

—_ 12 _ —T _ 12
yO_ 12 ’ Y_T ’ 75—- _12’
(2.8)
and the normalization is
Wpu(p) = 1, = (m[p")u*(p)u(p). (2.9)
Comparing (2.2), (2.5), and (2.6) we have
Firod) = Fq") + (@' [2m)Fo(q") = Fen(@),

1

FHu(d) = 6 {[Fy(aD)2m) + Fy@D} = 6! Fmag(d?).
(2.10)

The appearence of such a factor as 6%, of course,
depends upon the conventions adopted [such as the
explicit appearance of the factor (2L + 1)~% in (1.25)].
What is important for our purpose is the direct
proportionality with the famous linear combinations
of F; and F,, giving Fyy, and Fy,,,, respectively.

In our formalism j® is a scalar and j¥ has spin-
like transformation properties (Wigner rotations). As
we have seen above, this automatically separates out
the electric and magnetic properties corresponding
to the familiar combinations (2.10). This is more than
merely a technique for carrying through spherical
harmonic expansions for the matrix elements of j# in
one particular frame (namely, the Breit frame). The
electric charge being a scalar, and the magnetic
properties being related to spin, they correspond
[and that not only in one particular reference frame,
as is seen from (1.16) and (1.21)] directly to j© and
JW, respectively.

Thus, the separation of j(x) into j(x) and j*%(x)
has a significant physical basis.

“Some other examples for different spins are con-
sidered in Appendix A. We now pass on to the case
of the axial currents.

B. Axial Form Factors

For spin 4 (s’ = s = %), we have for the matrix
elements of axial currents between states of the same

parity.
(=K, 551 JO4 3k, 53)

_ (=

= amy 5 G 1M DTN

Mk)

M =s)—s) (211)

1371
and
(—3k, s3] J":%A 13k, s3)
4ar 1M
- ((213)3 (2, 1m | 1507 0 400 +
X (M, 1m | 1j;)Esar Vs | $50F 8140 Y5 (k)}
(2.12)

When the initial and final states correspond to the
same particle, Hermiticity and T-invariance restrictions
lead to

FRAKD) = 0. (2.13)

The corresponding feature in the covariant formalism
consists in writing the nucleon matrix elements in
the form

(p', s3l j |p, sa) = iy, (P
x [F{&®y, + F&) '
and suppressing such a term as

5, (P)0u(P" — P)vou, (D). (2.15)

[Sometimes G parity is invoked (p. 307, Ref. 5) in
order to eliminate this term.]

Thus we see that our formalism brings to attention
in a very natural way the symmetrized scalar (corre-
sponding j©)

— P'Wou(p) (2.14)

(P+j+j-P) (2.16)

and displays its physical significance. Usually only
the antisymmetrized scalar

i(P-j—Jj-P)

is singled out through the conservation or partial
conservation condition.

Consideringelectromagnetic vector currents, we have
seen that (2.16) leads to the charge form factors in
any frame. Now, for axial currents we find that the
restrictions due to Hermiticity and T invariance have
the very simple consequence of reducing the expecta-
tion values of (2.16) to zero. These features hold for
arbitrary spin. Some cases are treated explicitly in
Appendix A.

We may also note that the matrix elements of
J®A between states of the same 4-velocity p/m (or in
particular, the same momentum p and mass m) and
the same intrinsic parity, are always zero, since such
elements

(B> sal JO41B, 53y = (0,55 JO410,55) =0 (2.18)
through parity restrictions.

2.17)

5. D. Jackson, in Elementary Particle Physics and Field Theory
(W. A. Benjamin Inc., New York, 1963), Vol. 1.
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More generally, we may say that, separating a
nonconserved current into its so-called “transverse”
and “longitudinal” parts, is

Ju={ju— 0u,j,/0)} + 0u(9,,/0); (2.19)
we have for the longitudinal part
[P¥, [Py, (9,,/DD)-)s = [P% (3,),/0)). (2.20)

Hence for the nonconserved longitudinal part, the
matrix elements of the symmetrized scalar are propor-
tional to the mass difference between the initial and
the final states.

If corresponding to the anticommutator in (2.16)
[instead of the commutator in (2.17)] we introduce
the term “‘anticonservation,”” that the axial current
cannot be fully “anticonserved’ follows immediately
by considering the matrix element

O (P j*+ j* P)|m (2.21)

exactly as for the divergence (Ref. 5, p. 313). In fact
we have already seen that (2.16) is directly related to
the mass difference.

Let us now consider the form factors 4. Com-
paring (2.12) and (2.14) we obtain

. /3
Filak) = ;—/,—n[Ff(kz)(k” + m)

Fi'(k%
(4(k° + m)

st ([

For small momentum exchange, keeping terms only
up to k%, we obtain

- F;‘(k2)) "ﬂ 2.22)

ng(k){”. (2.23)

Fiaah = ‘L[z F{(0)
+ kz{i FA(0) — LF4(0) + 2mF‘14'(0)}], (2.24)
FRAK = (2) [(F 1O | g ‘)
{ O KO, Fé’(O)}]
(F1 «0) = a i P -o)' (2.25)

64m® 4m
If we postulate the usual “partial conservation”
condition

8,J% = Co(x), (2.26)

then, taking the matrix elements of both sides between
proton and neutron states in the Breit frame, we have

A. CHAKRABARTI

from (2.12) (neglecting M, — M),

Cio{—1K, s3] 9(0) |3k, Sa>(n>
= —ik (= 1K, 53] §%e 13K, S3)m)»
=l(—7)§(_‘—)_ 23,1M' 1s3)
Qm?® /3

— @F 403  K) YT M (k).
(2.27)

If we want to express the combination of canonical
form factors appearing in (2.27) in terms of the co-
variant ones, we have from (2.22) and (2.23),

\/3[

X (Fha k)

GIFOLK)) = X2| (K0 + m)FLL ) (k2

1
4Kk° + m)
Thus even in the simplest cases the explicit momentum
dependence comes out in a simpler and neater form
in the canonical formalism, leading to a more direct
physical significance of the form factors. Besides,
quite generally (i.e., whenever we can exclude ex-
tremely steep variations of the form factors concerned
with respect to the momentum exchange), the pre-
dominance of each term over the succeeding one is
very evident in our formalism for sufficiently small
momentum exchange.
The general formula for the matrix elements of
the divergence along with some particular cases is
given in Appendix A.

(‘F 5111::%1(1(2) -

Ff i (kF) — Fc:,,)z(kz)]. (2.28)

3. APPLICATIONS TO THE LIMITING
CASE OF INFINITE MOMENTUM
AND SMALL MOMENTUM EXCHANGE

With a view to subsequent applications to current
algebras® we now work out the necessary canonical
kinematics of the above-mentioned case.

Consider first the matrix element

K — 3k, s.| . K+%k,s3>
J ,
[m, s]

(m’, 5]
where j stands for any one of j*) or j{1) (m = 0, +1).
We are not concerned, for the moment, with other
possible internal quantum numbers.
Our purpose is to express (3.1) in terms of the Breit
frame matrix elements through (1.26), in the limit when

(3.1

K| — o0

and keeping terms only up to k* (|k| is supposed to
be sufficiently small for |k® and higher powers are
neglected).

¢ R. Dashen and M. Gell-Mann, (a) Proceedings of the Third Coral
Cables Conference (W. H. Freeman and Company, San Francisco
California, 1966); (b) Phys. Rev. Letters 17, 340 (1966).
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The components of k parallel and perpendicular to
K are denoted, respectively, by k; and k, . We need
not suppose k; = 0 to start with; it will automatically
be eliminated in the limit considered.

The transformation to the Breit frame corresponds
to a pure Lorentz transformation A(u) corresponding
to the 4-velocity u, having the limiting form

u=K/i u®=[K|/A+ A2[K|, (3.2)
where
A= + m) + Gk )Y = <(1 — (3K, )Y2¢)
(3.32)
with
x = [3(m® + mAL. (3.3b)

The limiting forms of the Wigner-rotation matrices
appearing in (1.26) are quite simple. We have, for
the above u and (p, p') = (K £ 1k),

m—m

W ——— K= ~(Aw)-p)

(K = K/[K]),

DA, p) = I, + (1/28){i(s x ky) - K}
+ (1/8&H{i(s x k) - K}2.

(A(u)-p) = 3k, —
(3.4)

3.5)

(K — 3k, 53| jI K + 3k, s5) = (—3K, sg] j |3k, Sa>+§:

t2 58
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Where, for example, for K — (0, 0, «), we have

(s xk )- K = i(stk? — s%Y) (3.6a)
= (Scrkioy — Sk)s  (3.6b)
and we have used the notation
1_ 4(x + m) G
& (i + m) 4+ (m®* — m'®)
= 1/m (forx = m' = m). (3.8)

For D%)(A, p’) we have to change the sign of k and
interchange m and m’, leading to

1_ Al + m) . (39

& dk(kc+ my+ (m?—md)
The explicit formulas for D® for s = 4, 1, § are given
in Appendix B. In fact, due to the simple forms of
the matrices S,,,, the general case presents no
difficulty, the only nonzero elements being D)
m=mmEtlm+2;m=—s5-:-,95).
Remembering the transformation properties of j,
we obtain, up to second order in k, the general
expression,

ki) {(s + 5)(s F sg + DK, s3] J 13K, 53 F 1)

2J2¢

ko) (0 )’ & s+ D=3k, 5{ & 1] 713K, 59

2 ~ ~
+3 %)_ {6 F 5o+ 1) F 53+ 2)(s £ 55 — Vs % s} =3k, 53l 713k, 55 F 2)

2 ~ ~
+ 2 (’;__22 (5" & 5§+ 15"+ 55+ 2 F s — (" F s)}—3k, 55 + 2| j13K, s5)
+

+ Z ke {(S + 595 F 53+ D & 56 F 55+ D~k 55 F 1] Ik, 53 F 1)

k k,
5 {
8

Here

k =k, —[m®—m?/I]K
and the invariant momentum exchange

—¢*=—K.

In the matrix elements appearing as the coefficients
of k_k, or (k.)% only terms of order zero in |k| are
to be retained and so on. Thus in the usual cases,
most of these terms are automatically eliminated.

—[S(s+1)—sal+-é_—[5(s + 1= s

}<—%i<, sl ik s, (3.10a)

2

As an illustrative example, let us (with a view to
subsequent applications) write down explicitly (3.10a)
up to second order for a particular case.

With the further supposition that not only |k{® but
also |l~(|3 in (3.10a) is small enough to be neglected,
namely, supposing that we need take into account the
mass-difference effects only up to second order, we
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obtain (for states of the same parity)

<K—7}k,sa+1 K + 1K, 53

“(0)v + "'(1)1}
[m, s'] U ) [m, s]

_ ko
@2m)*

— (585, 11| s's3 + 1) —

37(1)1)

{2 JZ A

2\/ 2&
where
L= (m® — m®)213(m* + mDP.
Further, when we have the same initial and final
particle, all but one ¥ terms disappear (since only
L = j terms survive due to Hermiticity and 7 invari-
ance, as noted in Appendix A).

Before proceeding further we must decide whether
or not we choose to retain the covariant normalization
for scalar product (1.17b).

In connection with the infinite momentum limit the
normalization usually adopted is

(P’ 531 pys3) = O(p" — PYsgss.  (3.11)
The reason is that the commutation relations and the
definitions of such operators as the multipole moments
are written down in terms of the covariant components
of j, and corresponding to transformation A, of
(3.2), we have

(J +%0,0,° + j°.

(3.12)

Hence in calculating for the covariant components
(K — 3K, s3] j [K + 3k, s3),
we have to replace j* in the Breit frame matrix elements
on the right-hand side of (3.10a) by (3.12) if we use the
covariant normalization. But if instead we adopt
(3.11), then (3.12) is replaced by
(kokol)é
A

lim A-(_u) Jj=
K—(0,0,00)

(J°+7%0,0,/° + /)
[R° = (* + mDE B0 = (& + mDY, (3.13)

and thus the infinite factor is eliminated. So far as the
extraction of information from the current commuta-
tion relations is concerned, the question of normali-
zation is not an essential one, since in either case what
we effectively retain is the coefficient (nonzero) of the
highest power of [K|. On the other hand, in defining a
physical magnitude (such as a multipole moment),

[633'{(3 - 53)(S + s3 + 1)}% 1(1 +

\/— s8%,11

s9)(s + 55+ D1sss + 1,20 s's3 + 1)

(5" — si)Xs” + 55 + DI¥sss, 20 s sa)}m;’m),
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1 l,) (FDH0) — LF 0D
© = (st 2| 5 + 1) 5 T + S 7250

NG

(3.10b)

the normalization must be chosen to assure a correct
physical behavior in the limiting case.
In any case, in what follows in this section, we
adopt (3.11) in order to conform to usual practice.
Let us illustrate the possible applications of our
formalism to current algebras by considering the
expression

— 1k. s/
lim <K 3k, 53
K~(0,0,00) [m, s]
1
X U i dx, e j”(O)} ‘K tiks\ _ g
t=0 : [m, s]
(3.14)

where ¢ is an arbitrary 4-vector.

In the dispersion treatment in Ref. 7 studying
the magnetic moment of the baryons, the authors
assume that the integral over the intermediate states
can be approximated by two discrete contributions.

Let us suppose that in a more general case the
intermediate states are saturated by a certain number
(say n) of states, each of a definite total mass and
spin ([m,,2,],i=1,2,---,n). (We do not write
explicitly other indices of internal symmetry. We may
suppose, for example, that j2 are the components of
the isoscalar or isovector electromagnetic current and
the integral is the corresponding axial charge.) Thus
we have,

Z[ K — 3K, 5| o4 K—%k,cr,->
i [m’ S] [miszi]
« (K= Waf K+§—k,ss>
[mi’zz'] 1)

_<K_%k’s:; € 'viK+%k’0'i
[m, s]

K + %k9 il .04

[mi’zi]

? S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 43A,
161(1966); S. V. Mathur and L, K. Pandit, Phys. Rev. 147, 965 (1966).

i
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(0, is the z comp. of 2.). In order to express the matrix
elements of j%! (corresponding to the space integral)
in terms of the Breit frame matrix elements, we have
only to put k, = 0 in the expressions found for (3.1).
This may easily be verified. [In fact, if we replace the
charge by a more general Fourier transform of the
density, it is useful to note that in (3.10a) we may add
a finite k’ to K without changing anything essential,
since such a k may be absorbed in K without affecting
its previous limiting behavior.] Thus we have the simple
results,

lim <K + 3K, 5 /4 [K + 3k, o,>
[m, s] [m;, ]
zmmi b —%Clk’ Sé 0.4 34 %Cika 0;
= |— 04 4 2 i,
(mz + m?) sl | T |, 3
(3.16)
where
m*—mi  H(m* 4 m)) —mi

= = (3.17a)
24m* + )P [h(m? + m)]?

For the momentum exchange, we have, instead of

(3.10b),

gt = 0. (3.17b)

If we suppose [as for (3.10b)] that the effects of
mass difference need only to be taken into account
up to second order, we obtain for states of the same
intrinsic parity,

3R, si|  oa o aa B3GR, 0
[m’;] G+ 7 (e, 5]
= %:—;3 [\/Lg (&0, 10 | ssé)fgggflylo(gik)

+ (Z,0;, 10 | ss))F b WAL K)
1 M H NG
+ 5_1} {1_21: 3(20’ 10 I JO)(Z,0,, jO I §83)F ;:ig?%j}‘yg(gik)]-

(3.18)

(All the other necessary indices of the s are supposed
to be implied through i, and for k? we have zero.
This should be taken into account in expressing
Fgy, in terms of ¢ through Hermiticity.) Thus
no spin index summation is needed over o,, since
always (independently of the approximation con-
cerning {i),
G, =S,

[similarly o; = s; in the second term of (3.15)).
Considering the products of expression (3.18) and
(3.10b), we find that up to second order of smallness
we need only retain the terms

;=5 s+ 1
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For states of opposite intrinsic parity, the odd and
even harmonics are associated with FW4 and F24,
respectively.

From (3.10a) [of which (3.10b), is a particular
example], (3.18b), we can develop (3.15) in powers of
|k,| by just collecting together the appropriate
coefficients keeping systematically terms up to second
order |k, {*(/=0,1,2). We get the necessary re-
striction of the form factors implied by the current
algebras in this limiting case.

4. CANONICAL FORM FACTORS FOR
PHOTOPRODUCTION AMPLITUDES

We have discussed elsewhere [Ref. 1(a)] how to
treat particles of zero and positive rest masses in a
unified manner in the canonical formalism. Here, as
an illustrative example, we give the canonical param-
etrization of the process

y+ A—>B+ A, 4.1)

where 4 is a particle of spin =, and B of spin zero.
[In Ref. 7 such a photoproduction amplitude is
related to the commutator (3.14) through the partial
conservation hypothesis.]

In fact, the representation proposed in Ref. 1(a)
gives directly the vector potential 4 for photons,
in the Coulomb gauge. The relation between the Wigner
representation and Coulomb gauge vector potentials
has been discussed by Weinberg and also by Moses.®
We would like to point out that if instead of passing
via the little group (two-dimensional Euclidean) one
uses our representation, the correspondence with the
potentials (for any spin) takes the most direct form
possible. (The details of the uses of the Coulomb gauge
potential, where one no longer needs indefinite metric,
are discussed in Ref. 9.)

For circularly polarized photons, for example, we
get in our representation the wavefunctions'?

(Ay & i)y
7 —(fy % ifis) |5
v (Ay & 1h5)y)
where 7, , Aiy, and p (= p/|pl) are mutually orthogonal
unit vectors. The spherical components of #,, are
defined in terms of 5(0, ¢) as

Ay = :F(eiw/\/i) Cos @,
Aoy = —(ilN2)ex. 4.3)

8 S. Weinberg, Brandeis Lectures (1964)p. 405 ; H. E. Moses,
Nuovo Cimento 42A, 757 (1966).

9J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill Book Company, Inc., New York, 1965).

10 Jt should be noted that for helicity 1S, the apparently slight
difference between our canonical and the spinor representation
[namely, transformation by (P%)%5] plays a decisive role in dis-
tinguishing the respective transformation properties.

yop) = % (4.2)

ﬁl(o) = _Sin 0,

figey = 0,
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The components of y, ;) are nothing but the spherical
components of the Fourier transforms of the Coulomb
gauge potential for circularly polarized photons
[0, A(p)).

Maxwell’s equations are often cast into the spinor
form through combinations (E 4 /B). Here we are
dealing directly with the three components of A.

Following the technique indicated in Sec. V of
Ref. 1(a), we obtain for the process (4.1) the following
parametrization of the S-matrix elements in the
center-of-mass system:

< | P _P” 0 l >
[ma ’ Za]; [mb ’ 0] [0 1] [ma s Za] %
= 3 4m(m® — mAyrt(m?, m2, md) (2L + 1)
Tz L), L' 47

x (11, 5,0, | E'o')\®'e", LO| Zo)
X (Z.00, LM' | Z0)Y 2 (8)Ss,500), 15

where

4.4

m = (p* + m)? + |pl;
Am?, m:, m) = m* + mi + m}
— 2(m2m? + mim® + m’m?),
and by choice of axis, p, = p, = 0. Corresponding to
the crossed process

y+B>A+ 4
” UL':; '—P” G(’z,

p
<[ma’ z:a]; [ma, Ea] 'lo 1] [mb’ 0]>

= Y am¥m® — m2yHm® —
£, L,EL)

x (12, LO | SAXEZ,a,, Z,0% | £&)
X (X6, LM’ | ZAY X (5)Ss, 1,610
(m' = @ + md)t + [p). (4.6)
5. CANONICAL SPIN AND CHARGE
COMMUTATION RELATIONS

Let us consider the operator

— L(pa_-1L
M P+ M

where A, V are the charges

1 1 v
= 5 ) ](x)) d’, V= 3 J((z)) d*x
(2m) (27) Ja'=
(5.2)

and are supposed to have their quark model commutation
properties.
In (5.1) M is supposed to be the “mass operator”

A= 41,

(4.5)
we have

2)_12L+1%
o)

P(P-A) — P x v), (5.1)

A. CHAKRABARTI

and in fact Z should be symmetrized with respect to
M and P® to ensure Hermiticity. But let us suppose
that Z, acting on a state of definite total mass, leads
to states of the same total mass as the initial one, or
rather that the mass differences between the initial
and final states can be neglected up to a certain
approximation. To this approximation we may sup-
pose that A and V commute, not only with P, but
also with M and P°. With this assumption we have,

[Z 2] = ig; ;X" (5.3)
Moreover, for initial and final states of the same mass,
momentum, and parity, we obtain

<p, s!illl z 'P’ s3> = <0’ sél z |0: Sa> = <03 Sél A '0’ sa>,
54
where the normalization (3.11) is implied.**

1t follows that the expectation values (5.4) of & do
have the correct transformation properties of the
canonical spin,'* namely, they transform through
Wigner rotations. Transition matrix elements (between
different mass and parity states, if we cannot neglect
them) would have a more complicated behavior, but
neither can we expect, a priori, a simple transformation
law for such cases.

Our definition (5.1) directly in terms of the currents
and the momentum operators may be compared with
Giirsey’s construction'? of the spin operator for a
free quark.

Of course, (Z) need not necessarily give the total
spin of a particle. In Gell-Mann’s model [Ref. 6,
includes previous references], A gives the quark spin
contribution to the total spin of a composite particle,
to which we have to add the “inner orbital” contri-
bution L.

The canonical coupling scheme (which we may call
“spin-symmetric”’ coupling), introduced in Ref. 13 and
already used in Sec. 4, provides a particularly suitable
technique for displaying the inner orbital contribution
since the complementary contribution due to the spins
is separated out in the simplest possible fashion. The
essential point that emerges from formula (2.30) of
Ref. 13 is that

(L=)S, =S —S;, (5.5)

where both S and Sy and hence also S,, transform
through Wigner rotations.

Thus we see that if the correct canonical transforma-
tion properties are ensured, then the respective

1 That the normalization (3.11) corresponds to the result (5.4) is
related to the fact that quark model charges appear in (5.1) and not
the densities.

12 F. Giirsey, in High Energy Physics, C. de Witt and M. Jacob,
Eds.)(Gordon and Breach Science Publishers, Inc., New York,
1965).

13 A, Chakrabarti, J. Math. Phys. 5, 922 (1964).
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contributions Sg, S, remain the same, whatever
value we take for p in (5.4). The varying mixtures
discussed in Ref. 6 as one passes from p =0 to
|p| — oo, are only consequences of defining as “‘spin,”
operators with unphysical transformation properties.

APPENDIX A

Here we write down explicitly the form factors for
some useful particular cases and discuss the restric-
tions due to combined Hermiticity and T invariance
on the matrix elements of the currents and their
divergence for such cases.

We have already noted (Sec. 2) that for the same
initial and final particle of spin } (or rather, more
generally, for such spin } particles as may be grouped
into a multiplet, their mass differences being neglected)
the above-mentioned restrictions coincide for vector

* currents with those due to the conservation condition.

From (1.24), (1.25) we can write the matrix elements

of the divergence as

~i(—3k, 53| (P-j —j " P) 13k, sp)
= —i(4w 1} 1 (_I)AI, M’ 1ot
i(4m) 2 %(ZL' n 1)% (ss5, L ' s's3)
X FRLE)YM(K), (A1)

Lo\
+ [(ZL’ — I)J';:’),(L'—I)L'

L+ 1\
- k (2].: + 3)Jss)(L+l)L:|}

[k = @Gk + mHh K0 = (@1 + ] (A2)
Thus it is quite easy to derive the effects of conserva-
tion or partial conservation conditions imposed on
the divergence and to compare them with the conse-
quences of other restrictions.

() §=8=1

For the elastic case (by which we mean the same
initial and final particles, which may, however, have
different p and S,), Hermiticity of the current operator
and T invariance lead for vector currents to the con-
ditions

a1y

F ﬁ)go(kz) =F illhlj2 k2) J 11,39 k2) =0, (A3)
reducing the corresponding F®*’s to zero. The
matrix elements are reduced to

(—3k, 53] JO 13k, s3)
HM

= (477) F OO EDYK)S + (_
@y [:J‘ 12.0(K%) Yo(K)d,, 5, 5t

X (Isg, 2M | 1s)F D3 kﬁ)‘v;M(k)], (A%)

where

FDp = {(k'° K)FD .
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~1k, 55/ jiy 13K, 55)
(477)% _I)M ' ' ’
= —(—2—7;()3T(1M’ 1m l 1_]3)(133’ ]13 | 1s3)
X FERE)YY(K).  (AS)

For the axial currents, we obtain, corresponding to
(A3),

dh FiPHK?) = 0 = FPAKD), (A6)
an ence
(—1k, s3] j 43k, s = 0, (A7)
(—1k, sgl JV4 3K, s5)
4 , 1M
— 22’;))3 [(ma, 1m | 1s)F D)y k) + = )

X (M, tm | 1j5)(1s3, 1js | 1s9)F ﬁ’é“x(kz)‘UEM(k)}-
(A8)
The divergence is now given by
FINAC) = [FRA0) — BF DA
(ii) S=8=3

Corresponding to (A3), we obtain (for the elastic
case)

(A9)

Figaok) = FggnK) = Fiju®’) =0, (A10)
reducmg F§)sand § ‘%J)%’ to zero again. The final forms
are
(=1, sl 77 |3k, s5)

_ ¢4n? (=™ 1)M
@n)
X (355, 2M | 8, sa)ff;gz(kz)v;ﬂ’(k)], (Al1)
(—1k, 55 jgalv:“zk S3)
_(am? [(—1)1”

el 3
X FE W00 + ” (3M, 1m | 3j)

[asm FOm ¥ + 2

(1M, 1m | 1j3)(3ss, 1J:sl 253)

X (353, 3s | %ss)ffgg:’ss(k%;f”(k)]. (A12)

For the axial currents, we obtain, for the elastic case

(=35 JO ks =0, (AI3)
(i sl 8 1k 39
1 M
- ((‘;”)) [ctsa, 1m0y i00 + 2= St
m

X 2 (2M, 1m l]Ja)(%Sa s Jja | $s)F uéAza(kz)‘y;M(k)

j=1,3

(_—._1)1_‘1 1 i Y3 3 3.7
+ 9* (4M, 1m | 3ja)(2ss» Jal 3s3)

Sggis(kz)v:”’(k)] (A14)
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We may note [(AS), (A12)] that for j* only the terms with L = survive (implying @ = 0). This is a
general rule and follows, for arbitrary spin, from the properties of the CG coefficients. For j®4 on the

contrary, the terms with L = j disappear.

APPENDIX B
We first give the explicit forms of the matrix (3.5) for the particular cases s =4, 1, 3, for the limit

K — (0, 0, c0). The parameter £ is given by (3.7).

M Ss=43
k_k 1
1+ —=} ———k
( + 1652) 2/2¢
lim DY, K + 1k) = (B1)
k~(0,0,c0) 1 L, (1 " k_k+)
2 2e T 16&*
i) s=1
k_k k k_k
I+ == -= —
( 8¢ ) 2¢ 8¢
k 2k_k k
(1) .+ 1 — >+ O B2
e A (52
kik, k, k_k,
7t B 1 4 =+
8¢ 2 ( * 8¢* )
Gii) § =2
(1 + 3k_k+) _‘/i k_ V3 k_k_ 0
16£° 2/2¢ 82
—3k, ( 14 7k_k+) ke 3k k.
2/2¢& 16&* 2¢& 8&*
P _‘/ v - (B3)
V3 kik, Kk (1 " 7k_k+) ~J3k_
8¢ V2§ 1682 2J2¢
0 V3 kik, —~J/3k, (1 + 3k_k+)
8¢? 2/2¢ 162
Finally we write down, as the essential step in and (as noted in Appendix A)
calculating (in terms of the canonical form factors FWL kY =0, for L 5 j (BS)

in the infinite momentum limit) the magnetic moment,
the electric dipole moment and the charge radius of a
particle, the derivatives

. [ 0 0°
Iim|—, ———
x|-0L0ky) Ok )0k,

X { lim K — 1k, s3 GO + jB) K + 3k, s
k~(0,0,) [m, s] [m, s]
0 1 (0 ,120
=~ "7=\571 . (B4
[ak(i) \/Z(akl + - akz):l ( )

These results would be sufficient in view of (B3) and
the fact that k, disappears in the limit considered.
[For the charge radius we have also to take into
account the term arising from the derivation of the
normalization factor in (3.13) multiplied by 1/(27)® x
T ]

In applying (3.10a) we note that in this case k = k

since we have the same initial and final particle, whose
moments we calculate.

Thus, finally we have, corresponding to the deriva-
tives 0/0k .,

Bryrrsya{(s £ (s F 554 1 L
sg,)lul(o)

x [ —__] (B6)
m [2s¢s + D]t
Corresponding to 0%/0k_,0k,,, we obtain

1 17 @
8,y —— | — = = FOK?
e (271')3[ 2(23/&L v K,
+ (555, 20 | SsF%0) + i“‘s +1)—s2)
F2(0) }]
s + opt) &7

J2@2 )3

(0)
F 15,000) +

(0)y,
38,0

1 " 4
x {5; FOU0) £
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In Paper I the basis of relativistic statistical mechanics was discussed and notions such as phase space,
Gibbs ensemble, distribution functions were defined. Paper 1I deals with hierarchies of equations for the
reduced densities. Extensive use is made of the beautiful methods of Klimontovich, In this way “classical
mesic interactions” are dealt with neglecting ‘‘radiation™ effects (i.e., “classical” emission of mesons).
It is shown how the “renormalization of mass™ affects the hierarchies obtained. Electromagnetic
interactions are dealt with: (a) neglecting radiation effects, (b) including radiation effects. The latter
case is treated on the basis of the Lorentz-Dirac equations and with the help of suitable modifications
of the formalism. In this way a new approach to radiation phenomena (for instance, in plasmas) is
obtained. Finally, as a matter of illustration, several well-known relativistic kinetic equations are
rederived in a slightly improved manner (i.e., Vlasov and Landau equations).

1. INTRODUCTION

IN a preceding paper,! hereafter referred to as
Paper I, we have developed a possible general
framework for relativistic statistical mechanics. In
particular, notions such as I' space, densities, and
reduced densities were defined in a strictly covariant
manner. With respect to the latter point our general
philosophy was to define relativistic notions only
within the framework of the geometry of Minkowski
space~time and of the system under study: no objects,
such as 3-planes ¢ = const, extraneous to these
geometries need to be used. In this paper, we adopt
again such an approach which, in our opinion, corre-
sponds deeply to the geometrical nature of the special
theory of relativity. In Paper I, the results obtained (at
least the definitions of densities, etc.) were, to a large
extent, independent of dynamics and therefore were
of kinematical nature.

This paperis devoted to some considerations of a
more dynamical character. In particular, we derive
equations for the various densities of Paper 1. In the
following, we mostly consider electromagnetic inter-
actions because of their importance in plasma physics.
However, we do not completely neglect the so-called
classical mesic forces since they may be of importance
in the study of neutron stars. The extension of the
results obtained, to the case of gravitational collective
forces being straightforward, is not considered here.

The methods developed below were initiated by
Klimontovich in the nonrelativistic case,? and also in
the relativistic case (although not in a completely

1 R. Hakim, J. Math. Phys. 8, 1315 (1967).

2 Yy. L. Klimontovich, Zh, Eksperim. i Teor. Fiz. 33, 982 (1957);
34, 173 (1958) [English transl.: Soviet Phys.—JETP 6, 753 (1958);
7, 119 (1958)).

correct form). These methods, which we use to a large
extent in the following, are most elegant and particu-
larly well adapted to relativistic statistical mechanics:
whatever the point of view adopted (either action-at-
a-distance or field) and whatever the further develop-
ments of nonquantal relativistic dynamics of inter-
acting particles may be (e.g., the Van Dam-Wigner
theory® or the consideration of extended* or spin-
ning® particles) Klimontovich’s methods can be
applied. The main idea developed hereafter is the
following: The consideration of the equations of
motion given by Rohrlich in his book,® shows that
one is led o extend the usual phase space’ so as to
include the accelerations of the particles and hence to
define generalized densities on this extended phase
space. Doing so, all radiation effects are included in
the densities and in the equations they satisfy. There-
fore, we are led to deal with a theory which is re-
normalized ab initio and has all standard properties
of usual statistical mechanics with the advantage that
it also includes radiation phenomena without using the
so-called field oscillators.

Section 2 is devoted to the study of the one-particle
problem. This section is of particular importance
because it contains the main characteristic features of
the theory and more particularly it yields a kinetic
equation for the particle in presence of its “self-field”
and shows how radiation phenomena can be dealt

3 H. Van Dam and E. P. Wigner, Phys. Rev. 138, B1576 (1965);
142, 838 (1966).

43, 8. Nodvik, Ann. Phys. 28, 225 (1964).

5 P, Nyborg, Nuovo Cimento 23, 47 (1962).

8 F. Rohrlich, Classical Charged Particles (Addison-Wesley
Publishing Company, Reading, Massachusetts, 1965).

7 In Paper I, we have seen that the phase-space of particles is a
8 N-dimensional space. In what follows, it is extended to a 12N-
dimensional space.
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with. In Sec. 3 we treat the case of classical ‘“‘mesic
forces” and give a hierarchy of equations for the
different reduced densities. Section 4 is devoted to
electromagnetic interactions which are formally con-
sidered from the field point of view on the one hand,
and from the Rohrlich equations on the other hand.
In Sec. 5 we rederive some well-known kinetic equa-
tions.

Applications of the present formalism are to be given
in Paper III, where, for example, kinetic equations
including radiation effects are given.

Finally, let us emphasize that the results obtained
in this paper are merely plausible results and will
remain so until a completely satisfactory relativistic
dynamics is found.® Although the research of a
nonquantal relativistic statistical mechanics be in-
teresting on merely theoretical grounds, although it
may be useful in plasma physics (for instance, radia-
tion effects for frequencies below the far infrared can
be treated in a nonquantal framework), we believe
that a fully satisfactory theory may be found in the
only well-studied relativistic dynamics, i.e., in quantum
electrodynamics.

Notations and Conventions

Throughout this paper, we adopt the notations
and conventions used in Paper I. Let usrecall, however,
that we use the metric + — — — and a system of
units where the speed of light is equal to one.

2. A ONE-PARTICLE PROBLEM

In this section we treat the statistical problem of a
charged particle embedded in an external force field.
Its equations of motion thus are the Lorentz-Dirac
equations. Hence we generalize relativistic kinetic
theories so as to include radiation phenomena. We
show, in another section, that the generalization to
many-interacting particle systems is straightforward.

A. Basic Equations and Definitions.

As is well known (see, e.g., Paper I), the equations of
motion of a charged particle immersed in an external
force field F*(x,,u,) and taking radiation reaction
into account, are®

d>x* d®x*  d*' d*x, dx*

—— = FH vs U L e ________v.__’

d+* (e, ) + §e {d’r3 + d-  dr? d'r}
2.1)

where m is the renormalized mass of the particle.

& The same “plausible” character occurs also in other theories such
as the one developed by the Brussels school (see Paper I, Ref. 10).

® Or equivalently, ... interacting with its self-field and after a
mass renormalization . . . .

REMI HAKIM

To Eq. (1) we must add the asymptotic conditions
lim y*(z) = 0, 2.2)

Tt

where we have set

' = d’*|d7*
(in what follows we also use the notation u* =
dx*|dr).

The fact that Eq. (2.1) is a third-order differential
equation implies that the general solution depends on
three arbitrary constants: x%, u4, and y%. Condition
(2.2) ensures that only physical solutions of Eq. (2.1)
are kept among the three possible classes of solutions.
Hence there is no runaway solution.

Let us now consider the statistical problems: The
initial data of the particle are distributed with a given
density of probability. From the third-order character
of Eq. (2.1) follows the nature of the w-phase space
of the particle: it is twelve dimensional. Indeed we
have

o= Mt x Ut x y4, (2.3)

where M4 is the Minkowski space-time, U* is the 4-
velocity space and y* the 4-acceleration space. It
should be noted that we have considered a flat
w-space which contains the actual curved p-space,
which is a 10-dimensional space. Indeed we must bear
in mind the two following relations:
wtu, =1, (2.4)
uty, =0,
which restrict the dimensionality of w. Definition (2.3)
is used only for the sake of simplicity and we also
impose conditions (2.4). Taking into account this
new dimensionality (12) of w-space, the microscopic
random density is defined as being

R(x,, u,, Yvs 7) = 6[xv — Xxy(7, x§, up, o)l
® 6[“v - uv(T’ x(’)) ’ ug’ 75)]

® Oy, — (1, x§, uf, y9)1. (2.5)
This density is obviously normalized by
f Rdp = 1. (2.6)
i

By taking the average value of R over the initial data
of the particle, we determine a generalized distri-
bution function

DO, ub, ;1) = f ROX*, u, %, 75 xk, ul, o)
I

X Dy(xg, ug, ¥65) do, (2.7)
where we have made the initial data apparent in the
argument of R. However, the situation is not so
simple as the one indicated in Eq. (2.7). Indeed, we
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must take the asymptotic condition (2.2) into account.
This condition implies that the only physically
admissible generalized distribution function D should
satisfy

lim D(x*, u¥, y*; 7) = O(x*, u*) ® ("),

T+

(2.8)

which, of course, expresses the fact that, at infinity,
the acceleration is well determined to the value zero.
There is another interesting consequence of Eq. (2.2).
It reads

lim y*(7; x5, ug, y5) = 0

T

or
Y (+ o0, x5, ub, y5) =0 (2.9

and allows the determination of y% provided the
Jacobian

Oy*(+ 0, x5, G, ¥5)

Oy

is different from zero for all (x}, u}). Note that in
Eqgs. (2.8) and (2.9) we have only considered the limit
T— 400, for we are mainly interested in prediction
problems not also in retrodiction problems.

The existence of solutions of the Lorentz-Dirac
equations satisfying the asymptotic conditions has
been proved by Hale and Stokes'® for large classes
of external forces.!' Unfortunately they have not
proved their uniqueness, which property would
ensure that the Jacobian (2.10) would be nonvanishing.
In the following, we assume that the external force
field F* is such that the Jacobian (2.10) is non-
vanishing.

Conditions (2.9) and (2.10) show that the average
(2.7)is incorrectand Dy(x} , u} , y3) necessarily includes
a factor o(y% — yh(xy , up)).

Consequently, instead of Eq. (2.7) we should
write

D(x*, u*, y*; )

= [ oo dutoRa, % 75 55, ) DA, ),
‘_M,‘XU‘
(2.11)
where the D, occurring in Eq. (2.11) is the same as
the one used in Sec. 2 of Paper L.

Exactly as in Paper I, we can introduce a proper
time-independent density N°(x, , u, , y,) through

Det (2.10)

~+o
N(x,, u,, p,) = drD(x,, Uy, py; 7) (2.12)

and a current in the generalized p-space (2.3) as
JA(xB) = N(XB)WA(xB)’ A= 13 T ]2’ (2‘]3)

10 3, K. Hale and A. P. Stokes, J. Math. Phys. 3, 70 (1962).
11 This, for usual initial data (x§, u%).
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where we have set
xB = (xva uva )’v)
and
nt = x4, (2.14)
In the new p-space N’(x ) is normalized by
N(xp(xg) dS, = 1, (2.15)

Sce

where S is an arbitrary 1l-dimensional surface in
p-space which is crossed by all possible world lines
solutions of the equations of motion. With the usual
choice of coordinates (x,, u,, y,) and by making
apparent'? in Eq. (2.15) the constraints (2.4), the
normalization integral reduces to

dyu dgy

N(x,, u,, yu*dx, - —
J:‘ZXV+XH ( 7 Bout

=1, (2.16)
where we have set 2 equal to the arbitrary spacelike
three-surface; ¥+ equal to the velocity three-space:
utu, = +1, u* > 0; Il equal to the acceleration
spacelike three-plane: u*y, = 0. The arbitrariness of
S (or X) implies the integrability condition

VAN =0, (2.17)

which is nothing but the continuity equation in u-
space.
B. The Generalized Liouville Equation

We are now able to derive an equation for D(xg, 7).
To this end we first derive an equation for the random

density R(xp, 7). First we start from the continuity
equation in p.-space:

9 R(xg,7) + 0,{u*R(x5,7)} + 9 {y*R(xz, 1)}
or du*

+ 5?; {7#R(x,7)} = 0. (2.18)
7

Next, taking the equations of motion (2.1) into
account and remarking that the independent variables
are (x,, u,, ¥,), we obtain

9

0
o R(xg,T) + u“auR(xB 7)) + ¥ a_u“ R(xg, )

3 i}
+ :(my“ — F*(x,,u,)) ‘;2:2 - y”y‘,u“} 5—}," R(xg,7)

+ 9? R(xg,7) =0, (2.19)
e

where we have used the relation w*y,R = 0 occurring

because of the d factors included in R and due to the

fact that y#(7) u, () = 0 as follows trivially from Eq.

@.1).

12 Ip fact, S is actually a nine-dimensional surface because of the
constraints (2.4).
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The equation for D is obtained by averaging Eq.
(2.19), and we get the very similar equation

2 2
2 ptwan+y»LD
5 D WAL+ Y5
0 6m
+ {(my" - F")2—e2 — y"y,,u“} s D+tE D=0
(2.20)

Integrating now this last equation over 7, we obtain
an equation for N’:

uo N + " —-a——.N’

ou*
6
+ {(my* — F")ziez—y"y,,u }iﬂ’+—-m-ﬂ’=0,

a i’
(2.21)

which could as well have been derived from Eq. (2.1)
and the continuity equation (2.17).

C. Remarks and Discussion

(1) Equations (2.20) or (2.21) have been called
“Liouville equations” because they are equivalent both
to the continuity equations in m-space and to the equa-
tions of motion. In fact, we no longer have a Liouville
theorem due to

dy*[0y, # 0.
Consequently, the p-phase space volume element is
not conserved during the motion. This can be roughly
shown by rewriting Eq. (2.20) under the form

(dD[dr) + (6m/[e?)D = 0,
which implies

D(7) ~ exp [—(6m/e?)r] - D(0);
and since

Du(r) = DOBUO) <> {D(r)ou(r)} = 0

(conservation of the number of particles), it follows
that
op(7) ~ exp [+ (6m[eH)7] - op.(0).

Hence, the p-space volume element increases ex-
ponentially with “time.” This renders troublesome
the definition of equilibrium.

(2) It is easy to verify that the solution of Eq. (2.20)
satisfying the asymptotic conditions (2.2) in the
absence of external force field is

D(x*, ut, y*; 1) = f(x*, ', 7) @ O(r"),
where f(x*, u*, 7) is given by
S&# ut,7) = B[x* — x¥()] ® o[u* — uH{(7)))
= (O(x* — Xt — ubr) ® O(u* — ub)) (2.22)
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and represents what we called D,(x,, u,; 7) in Paper

(3) The passage from Eq. (2.20) to Eq. (2.21) has
eliminated the term (0/dr)D. However, when an
initial-value problem is dealt with, Eq. (2.21) involves
a source term and reads

W3, N(xm) + y aa N(ep)

? 6
{(my -—F“) — 775l }7N(x3)+LZN
y e

= Do(X“, u*) @ 6(y* — yo(u¥, x)). (2.23)

(4) In fact, statistical mechanics derived from the
Lorentz-Dirac equations are not completely satis-
factory as far as Lorentz-Dirac equations are not
the equations of motion for the particle. The correct
equations of motion are, as remarked. by Rohrlich,
equivalent to both Lorentz-Dirac equations and the
asymptotic conditions, which prevent the possibility
of runaway solutions. In our model, we must impose
the asymptotic conditions to the various densities
involving acceleration variables. Had we used the
correct equation of motion,*

myH(z) = ﬁ K + ary) exp [—a] do, (2.24)

K¥(7) = my*(7) — 79"(7), (2.25)
the situation would have been much more compli-
cated. Indeed, the highly nonlocal character of Eq.
(2.1) shows that the m-space which should be used is
an infinite dimensional space

go= M x Ut x X y™4 (2.26)
=1

where y!™" is the four-dimensional space of the nth

derivatives of y*. In this p-space the continuity equa-

tion would formally read

5a—D+u“8D+z

n=—1

a (") {')’p(”+1)D} = 0 (2 27)
where D is a pseudo-density on this p.-space, which is of
the same nature as the one considered when dealing
with field oscillators. In Eq. (2.27) the various
y*™ (n > 1) can be obtained, at least in principle,
from the equations of motion (2.24), (2.25) or from
Eq. (2.1). Besides the mathematical difficulties raised
by Eq. (2.27), the variables y*'* are interrelated by
means of the constraints obtained by derivations of
u*u, = +1, in such a way that the situation becomes
rather involved. These are the reasons why it is
preferable to start directly from the Lorentz-Dirac
equations and next to impose the asymptotic condition
(2.8) to the densities.
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(5) 1t is interesting to compare the theory presented
here with the results obtained by Hénin,'* who
dealt with a similar problem. Hénin’s approach con-
sists in writing a Liouville equation for a pseudo-
density involving both particle and field variables and
giving a perturbative treatment.

(a) Our approach is manifestly covariant while
the transformation properties of Hénin’s are not
completely clear and need a special (and not given)
proof.

(b) We have dealt only with particle variables so
that our density has a well-defined meaning. Another
consequence is that we have no problem of choosing
a gauge.

(c) The Lorentz-Dirac equations include only
a finite mass and hence our theory is renormalized
ab initio. On the contrary, Hénin’s theory is not free
from self-energy infinities and the renormalization
procedure effected on the terms of the perturbative
developments of the pseudo-density is much more
complicated. Furthermore, Lorentz-Dirac equations
have to be derived in her approach.

(d) As we see in what follows, a manifestly
covariant perturbation expansion of Eqs. (2.20) and
(2.21) can be obtained, while in Hénin’s work, it is
not so. Accordingly we are able to derive easily
covariant kinetic equations taking radiation phenom-
ena into account while Hénin’s methods give rise
to rather lengthy calculations.

(6) The distribution functions D(xg, 7) or N(xg)
contain the effects of radiation in their y* dependence.
This is particularly interesting since the use of the field
oscillators is avoided. Let us give several examples of
radiation quantities®14:

dP*|dr = §e%"y,u* (momentum energy of the
radiation emitted per unit
proper time), (2.28)
Fiyy = —%e{u*y” — u'p*} (radiation field), (2.29)

Fliaw = (e/[R)}{(X"y” — X'y")R — (X*u" — X"u")Q},

(2.30)
with
Xt = x* — z4,
R = X"u,,
Q = Xﬂ'yln

z# is the position of the particle, and x* is the event
where the field is observed. FLY. is the far field
[see Ref. 14, p. 168, Eq. (5-8)]. An alternative form is

13 F, Hénin, Physica 29, 1233 (1963).
4 A. O. Barut, Electrodynamics and Classical Theory of Fields
and Particles (The Macmillan Company, New York, 1964).
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given by Rohrlich.® In fact, it is rather Eq. (2.30)
which is at the basis of all radiation quantities. By
applying the methods given in Paper I we are able to
compute the average radiation quantities. However,
it must be remarked that g// radiation quantities can-
not be obtained from only the distribution function.

For instance, it is well known in the nonrelativistic
case that the spectral density of radiation is connected
to the Fourier transform of the second-order momen-
tum of the stochastic process y(£)'®

I, 1) NJei”'(Y(t) -y(t + 7)) dr

[of course I(w, t) does not depend on ¢ in the case of a
stationary process]. This last relation involves the
knowledge of the joint probability that the particle
be in the state (x, v, y) at time ¢ and be in the state
(x’, v/, y) at time ¢ + 7.

In the relativistic case, we need a similar density of
probability, say

Wyxg,7;xg + yg,7 + 0)
= <R(xBa T) ® R(xB + yB’ T + 6»9 (231)

where the angular brackets denote an average over the
initial data. The preceding density W, must satisfy
the relations

—Wy(xg,7;xp+ yp, 7+ 60 =0
vy* ¢ I'(x*) (causality), (2.32)

—lim Wy(xg,7; X + yg, 7 + 6)
80
= D(xB, 1)5()’3), (2'33)

- f Waxp, 73 X5 + 5,7 + 6) d(ys) = Dixg, 7).
®

(2.39)
We return to these questions later.®

(7) Another feature of the theory is that kinetic
equations including radiation effects are obtained
without difficulty: in order to recover a usual distri-
bution function f(x*, u*; 7) it is sufficient to integrate
D(xp, 1) over the acceleration variables. This is
done in a following paragraph.

(8) Finally, let us also note that the introduction of
interaction is not extremely difficult when one con-
siders the external force field as given by the action of
the other particles.

15 It is often considered that the brackets below have the meaning
of a time average. This is, however, neither completely general nor
completely exact (see the brief discussion at the end of this section).

16 It is clear that if we want to know something about higher-order
moments of the radiation field, then it is necessary to have more
general densities, say W,.
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D. Kinetic Equations and Perturbation Expansion

In order to obtain a kinetic equation for the reduced
(and usual)?? distribution function

SCxy, uys 'r)dEef PD(X,, Uys Vp37)
= f dgyD(x,, ty, 7,37, (2.35)

a first idea would consist in using Zwanzig’s tech-
niques.!'®* However, the operator P is not a projector
so that they cannot be easily applied (P% = oo!).
Consequently we start directly from Eq. (2.20) and
integrate it over the acceleration variables. We get

%f(xv » Uy T) + uuayf(xv s Uy; 7')
+ a—i— (4 - #DCx,, s 731 = 0, 236)

where the term (0/9y*)y*%,(x, , u,, y,;7) goes to zero
if we assume a sufficiently decreasing behavior of D at
infinity in the y* variables (i.e., in the three-plane
IT). At first sight Eq. (2.36) seems to be very strange
since the external force field has disappeared. In fact
it is implicitly contained in D. Let us now give a
perturbative treatment of Eq. (2.36). To this end, use
is made of the perturbation expansion of the solution
of the Lorentz-Dirac equation, as given by Rohrlich.®
To the order zero in 7,, where radiation reaction is
completely neglected, we have F* = my*, and hence,
at zeroth order f'is given by the solution of the usual
equation

2 0 03 7) + 00,1V, i)
-
"
+ 2 [E (x*, u) fO(x, u")} =0, (2.37)
ou* \m
which reduces to a true Liouville equation when the
external force field is ““conservative”:

(9/ou")F(x", uw”) = 0,
which case occurs with electromagnetic forces.
For the sake of simplicity, the next order (order one

in 74) is studied in the case of an external electro-
magnetic force field:

FH(x*, u”) = eF*"(x,)u,.
According to Rohrlich [Ref. 6, Eq. (6-91)] at order
one in 74 , my* can be approximated by!®:

[0}
my* = F(x,, u,) + T{f; FH(x', u) + my%“"} "~
(2.38)

17 In Paper I, we used D(xy, uy; 7) instead of f(xy, uy; 7).

18 R. Zwanzig, in 1960 Boulder Summer School (Interscience
Publishers, Inc., New York, 1961), Vol. 3.

19 y#[»] denotes the nth-order approximation, while y#(») is the
nth derivative of yA.
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which can be rewritten as

) = PG, )+ mfuB, P )

d o]
+ 77 o PO, w) + myPy s
ou®
In the case of an electromagnetic force field, this last
equation reads

my*t = eF*(x Ju, + Tofeu,u’d,F*(x,)
+ eylIFe(x,) 4+ myPloy )

2
e

= eF" - u, + To{euvu”apF‘“’ +=u'F,, - F"
m

2

+ f—nuau”u"F"“ : F,,,,}. (2.39)

Taking into account the fact that d F** =0 (the
external force field is a free field),2° one finds easily

0 e? v . 6€° "

P Y (x, u,) = 7-0{; F,,F” + — ubu FP F,,,,},
(2.40)

so that the kinetic equation looked for is

2 10k, 3 7) + 00,10y 3 7)
:
+ £ P, < 10k, uy3 )
m ou”

= L (rT(e,, 1) fOx,, u)}, (2.41)
ou*

where p*11]" denotes the part of y#[*1 which is actually
proportional to 7,. The right-hand side of Eq. (2.41)
involves f1 and not f™ since we are dealing with order
one in 7,. However, we could perfectly replace f1%
by f01 in Eq. (2.41) since in doing it we should add
term of order +2 and hence negligible terms.

E. Remarks

(1) In deriving Eq. (41) it could be argued that we
have done an approximation on the variables y*
and that does not make sense. This procedure can,
however, be justified with the help of the random
density R(x,, u,, y,; 7). It is sufficient to note that

VER(x,, uy, py 7) = PH(T) R(x,, 4y, Y45 7)

because of the d factors occurring in the definition of
R. Next, we may write: y*I"I(7) = pH)[x (7), u,(7)]
and use again the § factors included in R. Finally,
Eq. (2.41) follows after taking the average value
in the equations obtained for R[*1and RI%,

20 This assumption is not necessary. It only allows us to drop a
term in Eq. (2.40).
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(2) We want to emphasize that the expansion given
above is a series in powers of 7, and not of €. Because
of the occurrence in the relativistic framework of a
new universal constant (i.e., the velocity of light),
it is clear that we have a new expansion parameter at
our disposal.

(3) We could perfectly obtain other kinetic equa-
tions valid at higher orders in 7,. However, according
to Rohrlich,® it is “empirically well-known that only
the first order in 7, is physically significant.”

F. Use of Another p-Space

We have already seen that, when neglecting radia-
tion effects, the usual relativistic kinetic equation for
f(x,,u,;7) is recovered. However, it would be
interesting to obtain a rigorous equation resembling
the usual one but having a second member involv-
ing 7, so that the “no-radiation approximation”
would be recovered simply by setting 7, = 0. To do
so we use a modified formalism which is based on an
alternative form of the Lorentz-Dirac equation.

It can be rewritten as™

my*(r) = F'(x,, u,) + mroA*(u,)py(7), (2.42)
where A*¥(u,) has been defined in Paper 1. This expres-

sion shows that y* depends linearly on y*, the converse
property being not true as shown by Eq. (2.1):

() = fal{y"(v) - F;} — P, p . (2.43)

Equations (2.42) and (2.43) indicate that we have the
possibility of using either (x,, u,, v,) or (x,, u,, ,)
as independent variables. As a consequence, we define
another p-space:

0= Mt x U x 74 (2.44)

and hence a new random density
R(xv’ Uy, ’J}v; T) = 6[xv - xv(T)] ® 5[uv - uv(T)]

In this new p-space, let us start again from the
continuity equation:

0 4 0 .

= R + 3,{u"R} + — {y*(x,, u,, p,)R
2 R+ 0,(0R) + 5 (e 3R)

+ _a'_ {#(x,, u,, PR} = 0. (2.46)
oyt

In Eq. (2.46), y* is to be replaced by its expression
(2.42) while 9* is obtained by deriving Eq. (2.43) and
taking Eq. (2.42) into account. Of course, a similar
equation may be obtained for

D(xv H uV 1 )‘IV; 7-) = (R(x\' » u\' ’ )"V; T)>' (2'47)
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Explicitly, it reads
d

Ip+wo b+ p
T m ou*

N
+ 7 {ﬁw ), 01) + 575 7Dy = 0. (2:49)

Integrating Eq. (2.48) over the variables y* and under
the assumption that D vanishes sufficiently rapidly
at infinity (in these variables), we obtain a rigorous
equation satisfied by f(x,, u,; 7),%

0 u F* 0
o Y g
an+ u'0uf + m au“f

d o
= — 5LF{AM(%) f di - va}. (2.49)

This equation has the required form we were looking
for.2 In order to obtain a kinetic equation at order
one in 7, it is sufficient to replace y, by y1° and use the
same techniques as those used above. As a consequence
we reobtain the kinetic equation (2.41). One easily
verifies that setting 7, = 0 in Eq. (2.49) yields the
‘““no-radiation approximation.”

G. Transport Equations

(1) Let us now integrate the (rigorous) equation
(2.36) over the proper time and 4-velocity variables.
Due to the vanishing of D (or N’} at infinity in the
velocity space, we get

0, ffdf daf(x,, u,; Hu* = a#fd4u.N’(xv, u,)u*
= 2,/ (x) =0, (2.50)

ie., the conservation of the numerical current of
particles, as expected. The same result can be obtained
from Eq. (2.49) as well.

(2) Multiplying Eq. (2.36) by u, and integrating
again over both the 4-velocity and the proper time
variables, we obtain the transport equation for the
energy and momentum:

6,,f MuN(x,, up) du
v

_ f i iy NGy 7) = 0. @51)
Y

The first term of this last equation is the divergence
of the momentum-energy tensor of the particles while
the second term contains the effects of the external
field of force and of the radiation. To the zeroth
order in 7, Eq. (2.51) reduces to the usual equation

0,T*(x,) = (e/m)F¥(x,)  ju(xn).  (2.52)

2! Indeed we have jd.y- D= j‘d.;'/- b=f
22 We have agair: assumed that (8/du#)Fr = 0,
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To the first order in 7o, we obtain [from Eq. (2.41)]:
0,T"(x,) — (e[m)F‘”(x,,) 1 0,(x,)

=T0],9 Fv8. T? e’ L . P
= —!ed F"" - T§g + —F"* Fg,-j
m m
et FFo uututl, (2.53)
m
where the bar over u,u*u* indicates a “local average”
over u. Expression (2.53) shows clearly that in addition
to the conventional terms (left-hand side) an extra
term representing the force density due to the radiation
reaction, should be added. Of course, Eq. (2.53) could
have been obtained from Eq. (2.49).

(3) As is well known, the frequency distribution
in a given direction is closely related to the correlation
Sfunction of the radiation field through its Fourier
transform. In fact, all observable spectra can be de-
rived from this “‘basic” spectrum:

I(x, t; ®, k) ~fe“"""’{<E+(x, N EX+yt+7)

~ (E*(x, DXE"(x + ¥, t + 7))} dr d3y (2.54)

(where the () denotes an ensemble average). In Eq.
(2.54) E* symbolizes the positive or negative fre-
quency part of E.

For instance, it is usually stated that the observable
spectrum is obtained from the above one (see, e.g.,
Ref. 23) by averaging over ¢ and x:

T
Ipg(@, k) lm = f dox f dHI(x, t; o, k)
Vow, - VvT Jv []

(2.55)

of course, Eqs. (2.54) and (2.55) are equivalent when
the stochastic process E(x,t) is stationary and
homogeneous.

However, there exists an infinity of possible
averaging operations, the one chosen depending on
the experiment under consideration. This shows that
it is rather expression (2.54) which is basic.

Furthermore, it is rather definition (2.54) which is
useful in order to derive a transport equation for
radiation phenomena, and hence to find emission and
absorption coefficients.

In the relativistic case, it has been shown that the
“intensity” I has no invariant (or covariant) mean-
ing.?¢ Despite this slight trouble, it is possible,
however, to derive a transport equation for the
quantity from which a spectral distribution can be

28 J. D. Jackson, Classical Electrodynamics (John Wiley & Sons,
Inc., New York, 1962).

2 J. L. Synge, The Relativistic Gas (North-Holland Publishing
Company, Amsterdam, 1957).
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derived in every Galilean frame, say, the correlation
tensor of the radiation field

<Fﬂ1"1(xp) . Fﬂz"z(xp + _Vp))'
In fact, as pointed out by Marshall,®® it is not this
quantity which is of interest for the momentum-

energy spectrum; it is rather a contraction of this
tensor. This contracted correlation tensor is*

Lux5. %, + y,) = (Fualx,)F3(x, + ,))
— 58u(F(x,)Fop(x, + 3,)) (2.56)

and the spectrum can be derived from T, (see Ref.
25). Therefore, we shall derive (in Paper III) trans-
port equations for I',, or rather for

K, (x,,k,) —_—fexp {ikty,} X Ty(x,, %, + y,) dyy.

(2.57)
The radiation field is given by (Ref. 14, p. 171)

Fraq = Ze{uy® — u'p*}, (2.58)

while the far field, which is of special interest in view
of applications, is given by Eq. (2.30), so that its
various transport properties will be obtained easily
(at least in principle) from the distribution D [or
D in condition to express y* in term of y*in Egq.
(2.58)] and from distributions W,, similar to W,.

H. A Remark on Irreversibility

The fact that radiation is emitted in an irreversible
way and more particularly the fact that it implies the
use of retarded actions, has led a number of physi-
cists®® to state a “postulate of equivalence of re-
tarded actions and Carnot principle.” Since the theory
developed here contains all the effects of the irrevers-
ible emission of radiation, it would be interesting to
study whether this conjecture is verified or not.

To this end, we have to calculate the entropy 4-
current of the system, and if the above conjecture is
verified we must have

0,8%(x,) > 0, (2.59)

which expresses (as shown in Paper I) the increase of
entropy and hence (in a sense) irreversibility.

Let us start again from Eq. (2.40) and multiply it
by log N(x,, u,). After an integration over the
velocity variables, we get

aqu(xp, u,) log N(x,, u,)u* dyu = 3,8*(x,) =0
(2.60)
(where we have assumed that the electromagnetic
25 T, W. Marshall, Proc. Cambridge Phil. Soc. 61, 537 (1965).

26 0. Costa de Beauregard, La théorie synthétique de la relativité
et des quantas (Gauthiers-Villars, Paris, 1957), Chap. 13.
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field is weak, i.e., |F @ F| « |F|), which shows that
the total entropy of the system remains constant
with or without radiation emission . Therefore the
system seems to have a reversible behavior and this
is certainly in agreement with the symmetry properties
of the subjacent dynamics (see Ref. 6, p. 245). In
other words, the gas radiates without loss of entropy:
radiation is emitted adiabatically.?” Let us also
remark that the same result would not have been ob-
tained by using the entropy defined by N(x,, u,, v,)
instead of the one derived from N'(x,, u,) and using
the exact Eq. (2.21).

In fact, these curious properties do not prove that
the above conjecture is false, especially because of the
too simple character of the model (noninteracting?
charged particles!). »

The problem should be reconsidered in a more
involved context.

3. KLIMONTOVICH HIERARCHY FOR
SCALAR INTERACTIONS

In this section we deal with a many-particle system
whose interactions occur through a scalar field.
Such a system is not of mere academic interest since
it is sometimes considered as describing neutron
stars®® as far as quantum effects are not concerned.
We give a hierarchy of equations for the successive
reduced distribution functions D,, D,, - - - introduced
in Part I. We use the most elegant method due to
Klimontovich,® which is generalized in the follow-
ing sense: (1) it deals with scalar interactions; (2)
it is remormalized; (3) the densities used are the
proper time dependent densities D, rather than N°,.
In this section ‘“‘radiation” effects (i.e., emission of
mesons) are neglected since they are out of the scope
of a classical (i.e., nonquantal) theory. We first
derive an unrenormalized hierarchy and next show
how the renormalization procedure may be intro-
duced.

We mainly deal with the action-at-a-distance point
of view although we always have an eye on the field
viewpoint.®
_"TEE}—.-Harris and A. Simon [Phys. Fluids 3, 255 (1960)] give a
similar result.

28 If we consider collective interactions, we would no longer have
0uF# = 0 but rather 9,F#v = j¥. As a consequence we would find
0,S# > 0. In the same way, if the external field F#v is not a free field,
we also have this irreversible behavior, provided the field is weak.

29 G. Szamosi in ‘‘Varenna Summer School: High Energy
Astrophysics” (1965) (to be published) and references quoted therein.

30 yy. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 33, 982 (1957);
34, 173 (1958). [English transl.: Soviet Phys.—JETP 6, 75%; 7, 119
(1958).] )

31 In the following when employing the word “field”” in dealing
with the action-at-a-distance point of view, it will be intended that
the “field” is nothing but a complicated expression involving only

particle variables which may be identified with the field in the field
viewpoint.
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A. Unrenormalized Hierarchy
The one-particle random density
=N
Rl(xv s Uy, T) = Z(S['xv - xv‘(T)] ® 6[uv - uv‘(T)]
(3.1)
satisfies the following continuity equation in p-space:
0 0 (du*
— R, + 9,{u"R —i{— R =0 (32
3 K1 ¥ 0l 1}+au"{df ‘} G2

Using the equations of motion of the particles (see
Paper 1):

mo(dut/dr) = AN(u,),$, (3.3)

where my, is the bare mass, A the coupling constant
and ¢ the toral scalar field! due to the system:
A* has been defined in Paper 1. Equation (3.2) can
be rewritten as

—a—R1+u“aﬂR1+ 2

T my auu

{A¥(u,)- 9,4 - R;} = 0.
(3.4)

Note that we have typically a “nonconservative” force;
ie., (3/0u¥) Fr 3£ 0.

[Let us remark that myu* is not the variable canoni-
cally conjugated to x#; it is rather p* = (my + Ad)u*.
Had we used x* and p* as independent variables and a
random density R, , we should have found an equation
which would have read

0 pﬂ 7 . _a._ R =
3 R, + o + 39 0.k, + 19,4 P R, =

~

d__l_ =0
dr
3.4)

because of the formally Hamiltonian character of this
equation of motion (see Paper I). This equation may be
considered as the expression of a relativistic Liouville
theorem. With the choice of (x*, u*) as independent
variables, Eq. (3.4) is equivalent to

R Jdr = — 2= wa,$- Ry 5 0
my

(347

and hence this “Liouville property” is no longer valid.]
To Eq. (3.4) we must add the equation satisfied by
the “field” ¢; for instance,

O + M24 = A f f Ry(xg, uls ) dat’ dr'. (3.5)

Then using the solution of Eq. (3.5) given in Paper I
(with ¢, = 0 since we are dealing with action at a
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distance) and substituting in Eq. (3.4), we find

_6_ Ry(x,,u,;7) + u"0,Ry(x,, u,; 7)

or
20 v ! 4 ’ rouly !
= — 2 {A" (up)fd‘r d4x d4u Rl(xv s Uys T)

m, Ou®
X Ry(x,, uy; DA, — x;,>}, (3.6)

where A(x,) is an appropriate®* Green function of
Eq. (3.5).

This equation is the fundamental equation generat-
ing the relativistic hierarchy for the reduced densities.
It is an exact and rigorous equation: no approxima-
tion has been used in its derivation.

Let us now proceed with the derivation of this
hierarchy. We first recall that both sides of Eq. (3.6)
are random because of the random character of R;;
R, is random because of the random character of the
trajectories or of the (unknown) “initial data” (see
the discussion given in Paper I). Assuming?® now the
existence of an averaging operation denoted ( ), let
us average both sides of Eq. (3.6). We get

i Dl(xv s uv; T) + u”auDl(xv ’ uv; T)

or
}.2 a A"v ’ ’ ' 4
= ——— (u,,)fdf dyx’ du'd,A(x, — x,)

mg, Ou*
X [(N — DDy(x,, u,;7;x,, 1y, 7")
+ Pyx,, ty, 73 X, u;,f')]}. G.7)
In the derivation of Eq. (3.7) use has been made of the
following relations!:

(Ry) = NDy,
(R, ® R, )= N(N — 1)D, + NP,.

As we see in a following paragraph P, represents
nothing but a self-action term. In what follows we
assume that N 1, which only slightly simplifies
the equations obtained. The second equations of
the hierarchy (i.e., the equation connecting D,
with higher-order distributions) may be obtained
by two different ways. First we may use again Eq.
(3.6) by multiplying it by R,(x;, u;; =) and taking the
average value. Second, we may obtain an equation for
R, directly [it is very similar to Eq. (3.6)] and take
again the average value. In both cases the same result
is found (as expected). Using, for instance, the first

32 At this stage there is no particular need to specify A more
precisely.

33 This assumption is in fact very weak. It is similar to the basic
statistical assumption (existence of an initial distribution) of
classical statistical mechanics. What we actually assume are some
simple mathematical properties like:

W()=(@), [O)={f)ec
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procedure, we find

!

i [N2D2(xv’ Uy, T3 Xy u(’a TI)]
or
+ uuaﬂ[N2D2(xv s uv 5T, x\’-s u\I' ’ T,)]
9 :
+ 'a—;[sz(xv, uv’T; x":’u;’T)]
+ u”au[NPZ(x\U Uy, 7, x\lya u",, T’)]

2
+ A i {A#V(u ) f dr” d,x" d4u”avA(x,, - X,
mey ou*

3 . . " "
X [N°Dy(x,, t,, T3 X, Uy, T'5 X5, Uy, T

(P oot ’ ’, ” ” "
+ NWAx,, u,, 75 X,, U, 75 {x,, 4, 7'})

+ NPy(x,, u,,,f;x;,,u;,,r';x;;,u;;,f”)]} =0. (3.8)

In the same way D, satisfies another equation in the
primed variables. In Eq. (3.8) the symbol § means
a sum over the permutations of the sets of variables
(x,,u,, 7). The term between the brackets [ ] under the
sign integral occurs because of the decomposition:

2= 2 + 32+ 23+ 3 +2 (39

i,k i,k (i=5y#k (G=k)#j Us=k)#i i

all different

each term of this last equality giving rise to D,,
FW?Z, P;, respectively, after the averaging process.3

In fact, the two equations verified by D, are not
sufficient to determine D, especially because Eq. (3.7)
involves the knowledge of P,. Therefore, we have to
derive the rwo equations verified by P,: They are very
similar and obtained from each other simply by ex-
changing the primed and unprimed variables.

An equation for P, is easily obtained by passing
through the intermediate step of the random density.!

It is found to be
g s
a—;Pz(x,,, Uy, T3 Xy, Uy, T')
+ u‘;a,‘la’z(x’,, Uy, T3 X, Up, T')
Z ' " " ” "
= {A“‘(u,,) f dr" dyx" dgu"d,M(x, — X,
¢ 2 ’ ' ’ " " "
X [INWx,, uy, 75 %, Uy, 75 {X,, Uy, 7))

+ Py(x,,u,,7;X,5u,57s X5 4,3 7] = 0. (3.10)

3 The physical interpretation of these densities appears to be
obvious when coming back to the subjacent random densities. For
instance,

WX, X5 {X") =D 81X — X7)]

i#j

® X — XN X" — X;(")]
may be interpreted as follows. It is the probability density that a
particle be in state X at 7 and that the same particle undergoes a
transition to state X’ at 7 while another particle be in state X" at 7”.
Of course, the “physical” densities are rather the densities obtained
after integration over the proper time variables. However, the
physical interpretation of the latter is quite similar. Furthermore,
W satisfies the following consistency relations:

WX, X' {X") dX" = Py(X, X),
Wi, x5 {x") dX = DX, X").
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With the help of Eq. (3.10) we can simplify Eq. (3.8)
further and we get

i Dz + u“aﬂDz

r

22 a A4 s n " us
+ =— {A" (up)fdf dyx” du"d,A(x, — x)

mg, ou*
X [NDy + Wi(x,, u,, 75 x,,uy, "5 {x,,u),,7'})

+ Wixy, uy, v x,,u,, 75 {x,, u,, TH]} = 0.
(3.11)

For a wide domain of applications the first two equa-
tions of the hierarchy are sufficient, although equations
for Dy, D,,: -+ may also be obtained in the same
way. Of course, D, will be determined by W?2 itself
satisfying other equations which may be obtained
easily. These equations involve higher-order densities
of the type W? (i,j > 3).

B. Remarks and Discussion

Let us now discuss the preceding results.

(1) The usual BBGKY hierarchy involves only
densities similar to the D;'s while the relativistic hier-
archy involves much more complicated densities such
as the P, or W¥. Furthermore the classical hierarchy
stops at N while the relativistic one is denumerably
infinite [for orders higher than N, of course, the
hierarchy does not involve densities such as D, but
only P, and W} (k,/ ="+ - c0)].

(2) The various equations of the relativistic
hierarchy are by essence nonlocal, contrary to what
occurs in the classical case [notice the sign sum in
Egs. (3.7), (3.8), and (3.10)]. This corresponds to the
fact that, in the action-at-a-distance formalism, the
equations of motion are nonlocal. Note that the infinite
number of equations of the hierarchy is also due to
this circumstance: the occurrence of the distribution
P,., W} is necessary due to the fact that they describe
the detailed structure of the system whose knowledge
is in principle needed to solve the equations of
motion.!

(3) So far we have dealt with an action-at-a-distance
point of view and it would be interesting to obtain
results in the field viewpoint. In Paper I we noted that
the statistical problem may be set in different ways.
We also remarked that the only one which seems to be
compatible both with the nature of the field equation
(difficulty of solving the Cauchy problem without an
extra assumption) and with the requirement of full
Lorentz invariance (i.e., avoiding the introduction of
objects extraneous to the geometries of the system and
of Minkowski space-time) consists in setting the sta-
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tistical problem in the following way: the random
elements which are at our disposal are (a) R; and
(b) éin the incident field appearing when solving the
Cauchy problem for the field at infinity; i.e.,

+o
é(x)) =f d’ dr'Ry(x,, u,; 7)A(x, — x,)
+ dil(x,), (3.12)
where ¢, is a free field solution.
In the field point of view, Eq. (3.6) would be
modified by simply adding a term of the form

9 (A0, dumRs}. G3.13)
Ju*

The relativistic hierarchy would then also imply terms
like

Pin® @I ®R® - ®R) (3.14)

and would be slightly more complicated. In fact, in
the field point of view it is even not necessary to
eliminate® a part of the field (the one depending on
the source R,) and we might perfectly deal with the
total field. In such a case (which is treated as a matter
of illustration in the case of electromagnetic inter-
actions in the next section) the hierarchy involves only
the “moments”’:

PR PR ® - ® Ry). (3.15)

In such a case the hierarchy obtained consists of
local equations.

It should be noted that all other possibilities indi-
cated in Paper I may also be treated with the same

methods.
C. Renormalized Hierarchy

In the preceding developments we were concerned
with the unrenormalized equations of motion and the
subsequent hierarchies. In particular, the bare mass
my and the self-fields were dealt with. Let us try to

_look at the self-action terms in the various equations

of the hierarchy. For instance, in Eq. (3.7) P, was a
self-action term, i.e., the same particle interacts later
with itself. In Eq. (3.8), P; may be interpreted in a
similar fashion. However, the various terms W?2
cannot be interpreted so easily. In order to show their
signification let us introduce a “‘visualization™ of the
various densities by means of diagrams. We denote
by X the set of variables (x,, u,, 7). Each set X will be
represented by a vertex and two solid lines. Hence
D,(X) or Dy(X, X') will be represented as shown in

35 If instead of Eq. (3.5) we had a nonlinear or a non-exactly
solvable equation for the field, this elimination could not be
performed.
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x FiG. 1. Diagrammatic representation of D,(X),
(X = {xy, uyr;}).

¢ Fic. 2, Diagrammatic representation of D,(X,, X,).

F16. 3. Diagrammatic representation of P,(X,, X,).

Fi1G. 5. Diagrammatic representation of
Wg(Xl » Xa; {X3)).

FiG. 6. Diagrammatic representation of

(A2/me)(3/Bum){Ar» [ 3,A - Dy}

>
)
> 1
!
? FIG. 4. Diagrammatic representation of Py(X;, X;, X3).
)
1
3
2

Figs. 1 and 2. A solid line between two vertices
indicates that the two vertices refer to the same particle.
Figures 3 and 4, respectively, represent P,(X, X”)
and Py(X, X', X"). With these conventions W2(X, X',
{X"}) is represented as indicated on Fig. 5. These
diagrams symbolize in a simple way all possible
densities. Let us now analyze the last term of Eq.
(3.7) or (3.8) or of any equation of the hierarchy.
These terms are characteristic of dynamics and it is
important to represent them in a suitable way if we
want to separate the self-action parts. Therefore,
given two vertices, we represent by a dotted line an
“interaction” between the vertices. By interaction
we mean that (a) the first vertex concerns the variables
involved in the derivations of the first terms of the

REMI HAKIM

equation [as, for instance (x,, u,, 7) with respect to
which D; (or D,)is derived in Eq. (3.7) [or Eq. (3.8)]]
and (b) the vertex corresponding to the integration
variables. In Figs. 6 and 7 we show how the two terms
involving D, and P, of Eq. (3.7) are visualized. With
this method the last terms of Eq. (3.8) may be repre-
sented by the sum of the diagrams given in Figs.
8-12.

FiG. 7. Diagrammatic representation of
(A2[mo)(@/dumy{Ary [ 3,A - Py},

: . . '
FiG. 8. Diagrammatic representation of the S

term involving W3(l, 2, {3)). (1,2,3 ~ X,, 3
X, X). 2
2
FiG. 9. Diagrammatic representation of the term f
involving W3(3, 2; {1)). s -
S N
Fic. 10. Diagrammatic representation of the term N 2
involving WE(1, 3; {2}). R
s \
"
\ )
T ]
t|l t
() (s) )

FiG. 11. Diagrammatic representations of the term involving Ps.
Note that diagrams (a), (b), and (c) are equivalent. In the same way,
other terms admit equivalent diagrams which are not represented.

Fic. 12. Diagrammatic representation of the |
term involving Dj.
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FiG, 13. Diagrammatic representation of Eq. {3.7). The term
that does not include a dotted line now represents {(8/9r,) +
uf'dy 1D, (1). Note that the *dynamical term” contains always one
more vertex: here, it is labeled 2.

Notice that only an even number of solid lines
can pass by one vertex. Note also that this diagram-
matic method allows one to write down easily the
terms corresponding to the “dynamical term” of the
equation verified by a density of order k: it is sufficient
to write down (k + 1) vertices and to join them by
(connected or not) solid lines in all possible different
ways, the dotted line®® must ahvays link a pair of
vertices the label of which is chosen once and for all
(e.g., in Figs. 8-12 only the vertices numbers 1 and 3
are linked by a dotted line); the choice of other pairs
corresponds to writing down the other equations
satisfied by the density of order k. The power of N to
be put before each term is equal to the number of
unconnected (by a solid line) solid lines. We have
symbolized Eq. (3.7) in Fig. 13.

At this point we want to emphasize strongly that
these diagrams are nor (by definition) representations
of a perturbation expansion: They are merely a
helpful tool and, as all diagrams, not indispensable.
However, they may also be used in a perturbative
treatment, but at this stage it is not necessary to go
into all the details.

Let us now come back to the self-action terms, A
brief examination of Figs. 6-12 shows that the only
self-action terms are those represented by Figs. 7,
10, and 11. It seems therefore that a renormalized
hierarchy may be obtained by eliminating these
terms while replacing the bare mass my by m,
the observable mass. We verify this property
below.

Let us now derive the fundamental equation of the
renormalized hierarchy. To this end let us consider
the unrenormalized Eq. (3.6). Its right-hand side
involves a product R,R; which corresponds to a
sum over two indices, each of them running from 1
to N. This double sum arises from the fact that Eq.
(3.5) yields the total field acting on the ith particle and
thus also its self-field. It is well known that the sub-

3% The diagrams presented here have only one dotted line. This
is due to the fact that in our dynamical model occur only two-body
forces.
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Fic. 14, Diagrammatic represen-
tation of Eq. (3.17). + "

traction of this self-field is equivalent to a mass
renormalization.®
Therefore we are led to perform the substitutions
R\Ry = z > Ry = z
44 iF7
my - m
{bare mass) (observable mass)

in Eq. (3.6). Hence we obtain

a—%R, + ud,R,

-AZ a ¥, f £ ¥ !
+ E —a-J; {/_\" (up)fd’r dyx’ d'd,A(x, — xp)R2} =0,

(3.16)

which constitutes the fundamental equation generating
the renormalized hierarchy. Now the first two equa-
tions of the renormalized hierarchy are

0 29

— D, 4+ u"d, D, + —— NIA"(u

ar . mau"( )

xJ&f@xdw@Aup—xgm}=o G17)
and

éa: D2 + u“a"Dz
2
+ " {A“"(u ») f dr' dyx’ duw'd, Ax, — x})

xW%+W$=Q (3.18)

and they are represented by Figs. 14 and 15, respec-
tively. The similar second equation verified by D, is

obtained by exchanging the labels 1 and 2 of the
vertices appearing in Fig. 15.

4. ELECTROMAGNETIC INTERACTIONS

In this section we consider first the renormalized
Klimontovich hierarchy and compare it with the one

37 This renormalization procedure is, of course, not valid whatever
the “‘field”” equation (or whatever the equations of motion). It is,
however, valid when using Eq. (3.5). Furthermore it is only the part
of the self-field that possesses the symmetry past-future, which
plays a role in the renormalization, the antisymmetrical part being
related to ‘“‘radiation.” Since we are neglecting ‘‘radiation” here,
we may directly use the symmetrical Green function as A(x,). For
the electromagnetic case, see, e.g., P. G. Bergmann, Handbuch der
Physic, S. Flugge, Ed. (Springer-Verlag, Berlin, 1960), Vol. 1V.
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FiG. 15. Diagrammatic representation of Eq. (3.18).

actually given by this author.® These hierarchies
neglect radiation phenomena so that we must give a
more general hierarchy. This hierarchy is a generaliza-
tion of what has been done in Sec. 2. Finally, for the
sake of completeness, we give a formal treatment of
both fields and particles by using the elegant methods
due to Klimontovich.2

A. Renormalized Klimontovich Hierarchy

In the case where radiation phenomena are com-
pletely neglected (or rather at zeroth order in 7,)
the same methods as those used in Sec. 3 again yield a
renormalized hierarchy whose fundamental equation
(in the absence of an external field) is

9 R, + u"9,R,
or
2
+< fG(xp — X, u )Ry dyx' dyu’ dv' = 0, (4.1)
m

where G is the following operator:

’ v ! a
ut0"} Dyey(x, — X )u, w , (4.2)
which is easily found by solving formally Maxwell
equations. In Eq. (4.1) D, is the usual retarded pho-
ton propagator.®
From Eq. (4.1), the first two equations of the hier-
archy are found to be

2
2 D, + u*9,D, + 2 NfG - Dydyx'du’ dr’' =0,
T m
4.3)

G={uo—

9 D, + u*9,D,

.
2

+ £ NJG “{Dy + N'W3} dx' du' dr’' = 0,
m

(4.4)

which may also be represented by Figs. 14 and 15.
To compare this hierarchy to the one given by

38 Yu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz., 37, 535 (1959);
38, 1212 (1960). [English transl.: Soviet Phys.—JETP 10, 524 (1960);
11, 876 (1960).]

3% Note that we deal with an action-at-a-distance point of view, in
the sense that the incident field is taken to be identically null. (See the
remarks of the preceding section and of Part [.)
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Klimontovich, we first define

+ o +o0
0, = R, dry - -« drp.
3 e k0T k
J'_OO ktimes f_w

(Note that Q, = N, , with the notations of Kli-
montovich.) Then, Eq. (4.1) reads (after integrating
over 7):

2 .
wd,0, + < f GO dyx' da’ =0,  (4.5)
nm
while the fundamental equation of Klimontovich is

2
3,0, + < f GO0, dix’ dyt’ = 0. (4.6)

mg
The difference between Eqs. (4.5) and (4.6) is obviously
due to the fact that Eq. (4.5) is renormalized whereas
Eq. (4.6) is not. Eq. (4.5) is used in Sec. 5.

B. A Hierarchy Including Radiation Effects

We proceed exactly as in Sec. 2 with the difference
that we are dealing now with N particles instead of
one. We start with the equations of motion as given
by Rohrlich®:

d u (i) . s 2. u

m——up = eFre(xDuy, + 3G + 9 Yot (4.7)

, )
0, Flex*(x,) = 0, 4.8)
(a)

+o0
0, Ffeix) =e| X olxf — xir)lui(r)) dr;, (4.9)

—o0 j#FL
where we have assumed, for the sake of simplicity,
that the system under consideration is constituted of
identical particles, that there is no external force
field.
To Egs. (4.7), (4.8), and (4.9) must be added the
asymptotic conditions:

lim y%r) =0, i=1,2,---,N. (4.10)

r—=+o0

Equation (4.7) shows that the particle I' space is
T= P-N — JK;:N X U4N X Y4N' (4.11)
On this T' space, we can define microscopic random
densities exactly as in Paper I; for instance, R,(x,,
u,, y,; 7) is defined by
=N
Rl(xv’ Uy Vvs T) = ._zla[xv - xvi(T)]

® 6(uv - uvi(T)] ® a[yv - Y\n'(‘r)]' (412)

Exactly as in Paper I and in Sec. 2, densities areaverage
values over the “initial condition” % of the random

4 The discussion given in Paper I on “initial conditions” may
entirely be reproduced here.
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densities; e.g., we have

NDl(xvauv9 ‘VV’T) = <Rl(xv:uv ayv;‘r)>' (413)

The asymptotic conditions (4.10) imply that the
densities D, satisfy the following conditions:

lim
(ry )=t

Dk(Tl’ T Tk)
i=k

= g, ui -+ xlu) @ ). (414)

The various densities D, generate proper time-inde-
pendent densities whose normalization is a straight-
forward generalization of the ones given in Paper I
and Sec. 2. For instance, the normalization of
Ni(x,, u,,7,) is already given in Sec. 2.

Let us now derive the fundamental equation
generating the new hierarchy. Starting from the
continuity equation in the new p-space

9 Ry + 8, (R} + = Ry} + = (R} = 0
ou* oyt

or
(4.15)

(which has the same form as the one already derived
in Sec. 2) and the equations of motion (7), one finds
(in the same way as in Sec. 2)*

0

0
a_TRl + u“a,,Rl + ‘}/u ﬁ Rl

3 v ) 0 3m
+ {5; [my* — eF™u,] — y"y,,u'}—Rl -5

R, =0.
oyt

(4.16)

In Eq. (4.16) F*" is, of course, the electromagnetic
field which is responsible for interactions,® i.e., it
does not contain self-fields. The effects of the latter
are implicitly included in the renormalized mass and
in the radiation reaction terms. Eliminating now the
field F#" between Eqs. (4.9) and (4.16), we obtain the
fundamental equation generating the renormalized
hierarchy taking account of radiation effects:

0 0 a ([ v
2R+ R 7 SRk Ll T v R
82 a ’ ’ ’ ’r, oy ’

- ———‘uvfdf dx' dy’ dyy'[u" 3 — ud"]
my 0y*

X Dyeq(x, — x;,)Rgi. (4.17)

Taking now the average value of both sides of this

41 The remark concerning the increase of the phase-space volume
element, effected in Sec. 2, is also valid in this many-particle case.
42 The notation is slightly incorrect.
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last equation, one finds the first equation of the
hierarchy:

0 0
5; Dl + u“a,,Dl + yuﬁ Dl

a (i v o u
— L= D
+ ay,,{[Tom 77v“:l 1}
_Ne3d

2 {uv f dr' dyx’ dg’ dey' w8 — u"d]

- mr, OY*

X Dux, = XD}
which may be visualized by Fig. 14. The second
equations of the hierarchy are obtained in the same
way as in the preceding section:

0 0
> D, + u"9,D, + y* P D,

o
—_ e v D
+ay,,l[70m V)’v”] 2}
Née* ¢

=27 {u,, f dr' dyx' dgt’ dey'[u"0" — ud)
mry Op*

X Dye(x — x') X [Dy + ng—l]:, (4.19)

(4.18)

which may be represented by Fig. 15. Of course,
another similar equation is obtained for the other set
of variables involved in D,, etc.

C. An Alternative Form of the Preceding Hierarchy

Exactly as in Sec. 2, it is again possible to use
another phase space:

A A

I'=p" = MY x UW x ¢V, (4.20)
On this phase space, densities such as the ones given
in Paper I may be defined; for instance, we have
=N
Rl(xv! uy, yv’ T) = Zlélxv - X"-(T)]
® O[u, — u, (N ® &y, — y, (1], (4.21)
which satisfies the continuity equation in {.-space:

Bt k) + L AR + 5 R} = 0.

")
or % (4.22)
After using the equations of motion (4.7), (4.8), and
(4.9), elimination of the interaction field, Eq. (4.22)
leads immediately to the fundamental equation
generating the hierarchy satisfied by Dy, D,, W2...:
oR,

r

, d .
+ u"9,R, + mm, > {A*(u )y, R,}

a TR a 2 ’ ’ r .7
=~ 55 PR + ﬁ{uv% f dr' dyx’ dg’ dgy

X (3" — ud") - Dye(x, — x[’,)Rz}. (4.23)
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In Eq. (4.23), the term involving #*R, may easily
(but tediously) be obtained from Eq. (4.7). In fact,
it leads to terms involving third- and second-order
random distributions so that Eq. (4.23) is much more
complicated than Eq. (4.17). Equation (4.23) allows
the obtention of a hierarchy for D,, etc., but its main
interest lies in the possibilities it raises in looking for
kinetic equations including radiation effects (exactly
as in Sec. 2). Indeed, integrating both sides of Eq.
(4.23) over the p variables, we get the following
(random) equation:

2 Ry(x,, u,; 7) + u*9,R\(x,, u,;7)
or

e2 a ’ ’ ’ I =13
+—-—— {lefd‘T dyx’ da'(u”0* — u'*o%)

m ou*

) Dret(xp - x;;)R2(xv s Uy, T3 X‘,, ’ ”,’,, TI)
3 (oo s .
- Tow{w‘(up) f i+ 9 R(x,, 1y, yv;T)} (4.24)

in the derivation of which we assumed a sufficiently
vanishing behavior at infinity in the p variables, of the
density R, .

Equation (4.24) consists of two terms. The left-
hand side of this equation represents nothing but the
fundamental equation generating the renormalized
Klimontovich hierarchy. The right-hand side is
proportional to 7, (and in general will be “small”)
and couples the usual densities [depending on (x,,
u,)] to the generalized densities [depending on
(x,, u,, 7,)] and therefore is a term including radiation
effects.

In another paper [R. Hakim and A. Mangeney,
J. Math. Phys. (to be published)], we shall give an
approximate hierarchy valid at order one in 7, and
from which several kinetic equations (thus including
radiation effects) will be derived.

D. Statistical Treatment of Fields and Particles

According to a large number of authors relativistic
statistical mechanics should treat both fields and
particles. In such a theory, bare particles plus the
total field (including also the self-fields) are dealt with
so that the theory should be renormalized at another
stage.

Consequently we start with the equations of motion
for the fields and particles, written as

n
du!

Ts

(4.25)
(4.26)

mq = eF*'(x,)u,,, i=1---N,

3,F**(x,) = 0,
i=N

QF(x,) =3 e f drdlx, — x, (r)lr), (427)

i=1
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where m, is the mechanical bare mass. Equations
(4.25) and (4.27) are equivalent to

Ry Wo,R, + — F*y, 2 g =0, 428
or mg ou*

9,F"(x,) = e f f dy dr*Ry(x, , uy; 7). (4.29)

With the help of the notations

L,, = ${u,(9/0u”) — u(0/0u")},
7 = efm,, (4.30)
Eq. (4.28) reads

R,/07 + u*d,R, + AL, F*'R, = 0. (4.31)

Taking now the average value of this last equation
over both field and particle “‘initial data,” we obtain
the first equation of a nonrenormalized hierarchy:

(/or)D, + u*9,D, + AL, (F*(x,)R(x,, u,; 7)) = 0.
(4.32)

Note also that from equations similar to Eq. (4.28)
satisfied by the random densities R, equations
analogous to Eq. (4.32) are obtained for the densities
D,:
(9/07)D; + u"9,D,
+ AL, (F*(x R (x, , u,,7; "+ 3 Xpeotp s Ti)) = 0
(4.33)

(and other similar equations referring to the other
sets of variables). Setting now

A = A2, X0 %% 0, 7)
= [(F""Y(x]) @ + + + ® F*"(x{) ® Ry(x,, u,; 7))l
(4.34)

(with A® = D,) we find [after multiplying Eq. (4.31)
by a suitable number of factors F** and taking the
average value] the general equation satisfied by AF
to be

(3)on)AF + 19, AF + ILB A = 0,

k=1,2,- 00, (435)

where the operator B, is defined by
(BkAk+l)“1vl T HAHREY = g:k+1g:k+1f‘ - .fd4x e d4x;€+1

X {0(xf —x2)®++ ® d(x — x2)® &(x" — x2'1)}
X (AR Been (4.36)
while the operator L; is

(Lk Ak+1)”lvl U BEVE — (L Ak+l)um A

By introducing an infinite-vector A whose components
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are the A*’s, Eq. (4.35) can be cast into a more com-
pact form. Indeed setting

L, 0 0 0
0 L, 0 0O
00 L, 0
L= . , (437
0
0 L,
B, 0 0 O
0 B, 0 0
0 0 B3 0 e
B = L. ,  (4.38)
0
0 B,
0100
001 O0--
000 1 O
4= o 1 @439
Eq. (4.35) can be rewritten as
9/9)A + u*9,A + ALBAA =0, (4.40)

the formal solution of which is easily found to be
A(7) = exp {—(u"0, + ALBA)r}A(0). (4.41)
[A(0) may be replaced by A(ry), 7, being arbitrary.]
In order to obtain an expansion of A(7) in powers of 4
it is preferable to work in interaction representation
by setting
Lo = u”a“ N

4.42
L1=L'B‘A. ( )

1395

However, 4 is not an interesting parameter because it
contains the bare mass and not the observable mass.

The knowledge of A(7) is, of course, not sufficient
to characterize completely the system under study.®
In particular, the various moments of the field are
needed. They satisfy the equations

OLFM"(x)) ® - - - ® F*¥(x}) ® F*(x*))
= j dr - dgu? (A B (4.43)
which can be rewritten symbolically

9,5 = ¢ j dr du A, (4.44)

W = {(an ®: - ® Fr® FI"’)}. (4.45)

Equation (4.44) can also be solved formally and leads
to

Fo=e f de' dyx' da’

X {A(T)[u"0" — u'0"1Dre(x, — x,) + F4',
(4.46)

where D is the appropriate elementary solution of
OD = 6 and where 52" represents either the corre-
lations of the initial field or those of the incident field.
In the latter case the proper time integration [in
Eqs. (4.43), (4.44), and (4.46)] goes from minus infinity
to plus infinity. In the former case,* this integration
goes from zero to infinity. Then F2¥ refers to the
initial correlation of the fields through

Fy =J;{3D(x,, — X,)55"(x,)
— D(x, — x,)0F%'} dX, (4.47)

where 0 is the normal derivative to X, which is itself
the “initial physical space.” In Eq. (4.47), 5% and
0F % are not independent. 5% may be obtained (at
least in principle) from 4 and Maxwell equations.

E. Remarks and Discussion

(1) In the above developments we were mainly
concerned with the statistical problem as set in Paper
I: i.e., there is no average value over “initial condi-
tions,” the only random elements being R, in the action-
at-a-distance viewpoint or R, and F** (or possibly

43 [n particular, functions like

<{Z OlX — X)) @ 8X" — Xe('r')]} ® F1*(1) - - - F""""(k)>

(with X = {x,, uu}) are also needed to specify completely the
system. More generally the average values of products of fields by
the random densities giving rise to various transition probabilities
are equally needed.

4 See the discussion below.
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F¥¥) in the field case. However, in Eq. (4.46) we have
also interpreted F 2 as resulting from correlation of an
“initial field”*F¥’ [Eq. (4.47)]. In fact, this departure
from our general philosophy was just an illustration
of a way of setting the statistical problem.! As
indicated in Paper I, there is a priori no reason why an
arbitrary F§* would result from the past of the system,
so that the above interpretation and Eq. (4.47) are
valid only provided one makes a further assumption.
This supplementary assumption is that of the
“switching on of the interaction on X.”

(2) Again in the field point of view, the field F**
may always be split into an incident field and an
interacting field; this latter contains also the selif-
fields and depends functionally on R;. Therefore
if we eliminate once again the fields between Egs.
(4.28) and (4.29), we are led to the fundamental
equation generating the unrenormalized Klimontovich
hierarchy to which one must add a supplementary
term of the form

(e/mo)Figu (0/0u*)R, . (4.48)
Next, average values may again be taken and a
hierarchy similar both to the unrenormalized Klimon-
tovich one and to Eq. (4.35) is found.

(3) Another point is that in the field point of view
the theory contains self-energy divergences and
therefore demands to be renormalized. For instance,
it should be renormalized at each order of an eventual
perturbation expansion. Secondly, other solutions of
the different equations for the moments can also
be obtained by performing a cluster expansion—as
Dupree?® did in the nonrelativistic case. Here again
the theory should be renormalized.

Unfortunately there is no general recipe for such a
program of renormalization of a classical theory.
The only possibilities that remain consist in con-
sidering the lowest-order terms either in a perturbation
or in a cluster expansion and in getting rid of infinities
in some way. However, in so doing we could perfectly
keep finite terms which in fact should be included in
the observable mass. For these reasons we prefer to
start with an a priori renormalized theory.

(4) It should be noted that, as is well known, the
field point of view also yields the Lorentz-Dirac
equation [although with the supplementary term
arising from F£, i.e., (e/m) F#'u,). Therefore, we could
also use a renormalized theory based on Eq. (4.16)
to which a term including F' should be added and
apply again the Klimontovich method, etc. In this
sense we should have a “renormalized field theory.”

4 T. H. Dupree, Phys. Fluids 6, 1714 {1963).
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(5) As a first conclusion we see that, whatever the
viewpoint adopted, the treatment of the field aspect is
much more involved than the action-at-a-distance one.

5. SIMPLE KINETIC EQUATIONS FOR AN
ELECTRON GAS

In this section, we illustrate the above formalism
by a rederivation of two well-known covariant kinetic
equations, i.e., Vlasov and Landau kinetic equations.*®
To this end we use the remormalized Klimontovich
hierarchy given in Sec. 4 at the order zero in 7, (i.e.,
radiation is neglected). In another paper, we give
similar kinetic equations for scalar interactions.*”
In ali that follows, the electron gas is assumed to be
embedded in a uniform neutralizing positive back-
ground.

A. Covariant Vlasov Equation

The Vlasov equation is a kinetic equation valid at
order (ne?) (n ~ density) which is equally obtained
by assuming the absence of binary correlations, i.e.,
(in the relativistic case):

D2 Xy, Uy T x:x ui; T‘)
= Dy(x,,4,;7) ® Dy(x}, u;;7). (5.1)

Note that the factorization of D, implies that of N’;.
Using now the first equation of the renormalized
Klimontovich hierarchy [Eq. (4.3)] and taking Eq.
(5.1) into account, we obtain the covariant Viasov
equation:

2
91y gD, + N [wrar — wravy
or m

" Drey(x, — x,) - Dy(x,, u,; 7') dr' dyx’ dgu’

. -—§~ Dy(x,, t,;7) =0,

™ (5.2)

which, of course, reduces to conventional forms after
integrating over r. Equation (5.2) may be generalized
in several aspects and used in a similar manner as in
the classical case. In particular, a dispersion relation
for the propagation of a small disturbance may be
obtained. In another paper we shall see that radiation
phenomena imply a modification of Eq. (5.2).

46 In fact, the covariant Vlasov equation has been derived by a
large number of authors (see Paper I). However, the various deriva-
tions used are not completely correct. In the same way, there exist
two derivations of the relativistic Landau equation. One has
been given by A. Mangeney [Ann. Phys. 10, 191 (1965)] and is
rather involved, and not in a covariant way. The other one has been
given by Yu. L. Klimontovich®® and is incorrect on several points.
In particular, this author used the unrenormalized hierarchy and
got rid of the subsequent infinities because of a number of errors of
calculation, etc. In the following we derive these equations “‘rigor-
ously™ in the sense that the derivation involves no more assumptions
than in the nonrelativistic case (when using the BBGKY hierarchy).

47 R. Hakim, Nuovo Cimento (to be published).
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Let us now come back to the field point of view.
From Eq. (4.32), by imposing the factorization

(R, ® F*") = (Ry) ® (F*"), (5.3)

we find

oD, e . 0
*51-— + uale + ;o (F* >llv5u7 D, =0 (54
and
3(F*™) =0,
(5.5)
0,(F*") =J.Ne dr’ da'u’”D,

Eliminating now (F**) between Egs. (5.5) and (5.4) we
obtain Eq. (5.2) with this difference: m, occurs
instead of m. It follows that, strictly speaking, the
equation obtained reduces to

(8D,/37) + u*d,D, = 0, (5.6)

since the bare mass m, is infinite! In fact, the Vlasov
equation might be obtained in the field point of view.
However, it would be very difficult to justify (at the
approximation considered) the replacement of m, by
m.18

This slight difficulty exists as well in all non-re-
normalized hierarchies, as is the case in Klimontovich
hierarchy. This author imposes the condition

(R ® Ry) = (Ry) ® (Ry), &)

which is similar to Eq. (5.3). In fact, we have already
seen that
(Ry®R))=N(N—1)D; + NP,,

and comparing with condition (5.1) (which is the
relativistic generalization of the classical condition),
the term involving P, appears to be responsible for
the change m, — m, as expected.

B. Covariant Landau Equation

(1) Now we rederive the relativistic Landau equa-
tion in an improved way. The Landau approximation
is characterized by several assumptions among which
are found:

(a) Absence of three particle correlations (i.e.,
the third-order correlation function vanishes);

(b) Validity at the order y*~ e* (where x is the
expansion parameter);

(c) Small energy-momentum transfers during col-
lisions;

(d) Existence of two time scales (the times con-
sidered are long compared to the correlation time);

(e) Spatial homogeneity of the system.

Of course, exactly as in the classical case, these

48 [t is also clear that the factorization (5.3) is incorrect.
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approximations can be justified rigorously. Further-
more, they are not completely independent.

(2) As usual,® we start from the first two equa
tions of the (renormalized) hierarchy,® ie., from
Eqs. (4.32) and (4.33). Using the cluster expansion

Dy =g,

Dy=D,® Dy + g,

Dy=D,0oD;®D,+D,®g,+D,®g + D,
® g+ g3 (5.8)

these equations may be rewritten as

2
9 by + ud,Dy + ﬁ’i: [G(D, ® Dy) + ngl} —0,
or m
(5.9)

0 K e .
5;‘_g2+ u ug2+"r;; GW,

Neé?
+-m—UG[DI®g2+D1®g2+Gga]}=0-

(5.10

In Egs. (5.9) and (5.10) G is the operator defined at the
beginning of Sec. 4. Of course, there exists another
equation similar to Eq. (5.10).

(3) Let us now use the approximations considered
at the beginning of the paragraph. Assumption (a)
implies that the last term of Eq. (5.10) vanishes.
Assumption (b) implies that g, must be calculated at
order €2 [in order that Eq. (5.9) be valid at order ¢%].
Therefore, Eq. (5.10) is rewritten as

0 3 e 2[0]
a—Tg2+u ‘,g2=—; Gwi, (5.11)

which shows, as expected, that g, is of order e2.
At order zero W3 is given by

2[0° ” U ’ I3 ’,
WS[ ](xp’u;;’T axpv up"r ,{xp’up’T})

= Dy(x,, u,; DDy(x,, up; ')
X 6[x;; — x,’, — uy(r" -~ ‘r’)]é[uz —u,], (5.12)

and this is equivalent to assumption (c): particles
move practically along straight world lines or, equiva-
lently, the field acting on particle 1 is the field produced
by particle 2 moving along a straight world line.

4 D, C. Montgomery and D. A. Tidman, Plasma Kinetic Theory
(McGraw-Hill Book Company, Inc., New York, 1964).

50 At the order considered (~e*) it is possible to show that for a
spatially homogencous system the effects of radiation play no role,
being in €® at the lowest order: I. Prigogine and Ph. de Gottal,
Physica 31, 677 (1965). However, these authors use a perturbative
treatment which involves only one expansion parameter e? so that
7o ~ €2 In fact there are two expansion parameters (~e? and ~7,)
and radiation phenomena- occur at the order ~e'r, for homo-
geneous systems (i.e., at order ¢%), or even at order ez, for an
inhomogeneous system.
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Approximations (c) are used in solving the simple
inhomogeneous Eq. (5.11). They amount to neglecting
the arbitrary homogeneous solution of this equation.
Furthermore, the densities D, occurring in Eq. (5.12)
are to be “frozen” (adiabatic hypothesis?®) in the
calculation of g,.

Equation (5.11) may be solved either with the use of
Fourier transformation, or more simply by using the
“causal” Green function

K(x, — xp5u, —uy;7— 1)
= 0(r — 7)0[x, — x, —u,(r — )] ® (u, — u,)
(5.13)

and letting the “initial” proper time tend to minus
infinity (this is legitimate because of the existence of
two time-scales: “initial” correlations are destroyed).
Finally the expression obtained for g, (after tedious
calculations) is the one given by Klimontovich®;
using the expression for g, in Eq. (5.9) and taking
into account condition (e)*® the covariant Landau
equation is found®®:
4
a%Dl + ud,D, = %%a%’ f ), u,)

0 0
x {D1 © D= DO Dl}, (5.14)
where the tensor €/ is the one given by Klimontovich.

From Eq. (5.14), a relativistic Fokker—Planck
equation may be obtained, etc.

[It is interesting to note that the preceding calcula-
tion furnishes the relativistic correlation function g,
as a functional of D, at order ¢%. Hence, when D,
is chosen so as to represent an equilibrium state
(ie., when D, is the Jittner-Synge distribution
function), then we obtain the equilibrium correlation
function at order €%, gp,, . g2, is needed when we want
to generalize in a covariant way the Guernsey kinetic
equation. ]

6. SUMMARY AND DISCUSSION

In Paper I we discussed the basic statistical prob-
lems. First, we showed that, if “initial data” (to be

51 After an integration over 7 and 7’.

52 The spatial homogeneity of the system implies that there exists
a timelike unit four-vector a# such that the x, dependence of D;
occurs only through

Dy(xy, uy; v) = Dy(akxy, ity; 7).

Hence the “Vlasov term” in Eq. (5.9) gives rise to a term involving
a constant electromagnetic field itself annihilated by the positive
uniform background.

53 After simple but rather tedious calculations. Note that, in
obtaining the symmetrical form of the collision term, relations such

au{‘ﬁgd‘rDret(x,, — x; - u‘,-r)u“} =0

must be used.
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specified more precisely later) are to be actually related
to the measures of an ““observer,” then it seems that
they should not be sufficient to characterize the
ulterior behavior of the system. Next passing to the
mathematical initial data, we showed that it seems
they cannot be given on a spacelike hypersurface
since the knowledge of the entire past of the system
seems to be required. Therefore we concluded that the
basic relativistic statistics cannot be set into a form
similar to the Newtonian one, at least without further
assumptions. Finally, after analyzing the classical
notion of a Gibbs ensemble we defined a relativistic
Gibbs ensemble as being the data (a) of the manifold
of solutions of the equations of motion and (b) the
data of a probability over this manifold. This point of
view led us to consider as basic random element
Ry(x,, u,; 7) (and possibly the in-field).

At this point it seems to be worthwhile to discuss
a slight mystification involved in the theory. Appar-
ently, knowing the equations of motion governing
the system and “randomizing,” either the *“initial data”
or the manifold of solutions seems to lead to statistical
mechanics. In fact, it is so only with a slight mystifica-
tion. Indeed, we generally deal with only one physical
system and nof with an infinity of similar systems.
In classical statistical mechanics this difficulty is
avoided by the assumptions of ergodic properties.

[Let us consider for simplicity the question of
equilibrium. Since we deal with only one system, the
only possible average values which may be calculated
are temporal averages; i.e.,

f K(t, 1) Alq(), p(t)] dt’ = A.

Strocchi® has shown that, under simple plausible
assumptions, the averaging operation is the usual
time average. We are therefore led to assume ergodic
properties.]

Here we have not proved a theorem similar to
Strocchi’s one and we have not yet a precise idea of its
relativistic form. Hence we cannot invoke some
“covariant ergodic properties” and therefore our
model rests on the hope (or the assumption) that it will
be convenient in describing the properties of only one
system.

Once the basic statistics are introduced, phase
space is defined. Contrary to the Newtonian case
where phase space is the set of initial data, the
relativistic case phase space is only suggested by the
form of the equations of motion and thus is chosen for
convenience. Phase space is then an 8N- or 12N-
dimensional space according to the choice of

B4 F. Strocchi, thesis (Pisa). See also, Orsay Report Th.118 (1965)
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equatioris of motion without radiation reaction, non-
renormalized or with radiation reaction (in the
electromagnetic case). The use of acceleration vari-
ables in the electromagnetic case (i.e., the use of a
12N-dimensional phase space) is practically imposed
by the form of the equations of motion on the first
hand and by the need to deal with radiation phenom-
ena (see below) on the other hand. For instance, let
us assume we want to derive an equation for a random
density depending only on (- » * x#,u® - - -). It is easy to
see that this is not possible since y* cannot be ex-
pressed in terms of only (-::x#,u¥---) but also
includes y#. Therefore we are naturally led to y“-
dependent densities and hence to a 12N-dimensional
phase space. At this point, it seems to be worthwhile
to emphasize strongly that the term *“‘phase space” is
not adequate since our “phase space” has nothing to
do with the “initial data™ of the system; it is only
chosen for convenience. On these phase spaces
densities are defined through the intermediary of
currents. This intermediate step is demanded by the
geometrical nature of the problems considered; in
particular it is required because of invariance under
changes of coordinates (preserving the + — — —
character of the Minkowski metric). These invariance
requirements lead to define average values as fluxes
of generalized currents of properties considered. Of
course, these average values reduce to the ordinary
ones when choosing 3-planes ¢ = const to calculate
them. In general these average values are by no means
similar to the Newtonian ones especially because of
their geometrical structure. In particular, local averages
are not completely satisfactory.

An alternative way of defining densities on phase
spaces is again suggested by the form of the equations
of motion. It consists in defining proper time-(or any
other parameter) dependent densities. These densities,
which are naturally related to the above ones, are
obtained by averaging over the possible paths of the
particles (and possibly over the fields) a random
density describing one given realization (i.e., one
motion) of the process. The chief interest of these
random densities arises from the ease it allows in
deriving the equations they satisfy (i.e., the funda-
mental equations generating the relativistic hier-
archies). In other words, they permit the use of the
elegant methods of Klimontovich. We first applied
these methods to the case of interactions via a scalar
potential and obtained two hierarchies, a nonrenor-
malized and a renormalized one. In obtaining them
we neglected ‘“‘radiation” (i.e., mesons emission)
arguing that “radiation” needs a quantal treatment.
In fact this point should be elaborated further. Next
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we dealt with electromagnetic phenomena giving
several possibie hierarchies: field, with or without
radiation reaction, etc. It was clear that the field point
of view leads to complicated equations which in-
volve the usual infinities. This is the reason why we
preferred starting with the resulting equations (i.e.,
the Lorentz-Dirac equations) which occur as well
from the action-at-a-distance point of view. Note that
if we did not neglect classical meson emission, it
would not have been possible to deal with scalar
interactions in such a way. It has indeed been shown®®
that the field and action-at-a-distance viewpoints
yield different equations of motion (nonlocal) for this
scalar case. ‘

Another interesting possibility of such an approach
is that since radiation effects are completely taken
into account, it is in principle possible to evaluate
radiation quantities such as correlation functions for
the radiation field. We say ““in principle” because the
averages considered above seem to lead to troubles.
Indeed, let us consider the average radiated field at
infinity (or more precisely the far field) at point x,.
Its expression is given by Eq. (2.30). In order to obtain
the average field (F& ) we should first calculate the
*“far-field current”

J(x,, X)) = f f g’ dygy'wFSee (%5 x4, ul 7))
x N(xl, w0,

whose physical meaning is (presently) completely
obscure. Next we should calculate the flux of Je»¥
through an arbitrary spacelike surface X:

(Flago)z(X,) = LJ prY dzp .

Unfortunately, the current J##¥ is, in general, not
conservative:

9,7 # 0

so that (F¥.) actually depends on X! In fact, this
difficulty may be removed by remarking that the field
at point x, comes from all events situated on the
backward null cone I'(x,). Therefore, X must be
restricted to be I'~(x,) in problems involving radiation
(although T is not spacelike).

Another problem is that of equilibrium. We strongly
emphasized that definition of equilibrium states is yet
unknown even in the Newtonian framework. Of
course, it is possible to define equilibrium average
values by taking time averages and next invoking
ergodism. However, the problem remains open:
how to select the equilibrium densities? (or the

%5 P, Havas, Phys. Rev. 87, 309 (1952).
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ensemble averages). From a relativistic point of view
the same problems are also unsolved. Furthermore,
problems arising from the complicated nature of the
equations of motion arise. Indeed we suggested in
Paper I to define canonical distribution using informa-
tion theoretical arguments, but here also we were led
to rather involved functional expressions very difficult
to solve. Another possibility would be the definition
of microcanonical density through

Ny = <6(P“ —J;”T""l""’Ndzpl...m)>

(this expression does not actually depend on Y3V
because of conservation relations satisfied by the
generalized random momentum-energy tensor T#01 "2y
since we deal with a closed system). Unfortunately,
very complicated expressions occur also in this case.

Throughout these papers (and also in Paper III) we
have discussed both field and action-at-a-distance
viewpoints. It is, however, clear that the action-at-a-
distance point of view is much simpler to handle in a
statistical framework than the field one. Furthermore,
action-at-a-distance may be generalized in a straight-
forward way (in the statistical framework) so as to take

REMI HAKIM

into account more general kinds of interactions,
spinning or extended particles. In both points of view
general relativity may be taken into account, at least
in principle, using in Einstein’s equations the momen-
tum-energy tensor of the system. However, some
minor modifications are needed: (a) phase space is the
tangent fibre bundle to the manifold ViV x -

x V3V; (b) densities are defined exactly as in Paper I
but much more care is required in normalizing them;
(c) equations for R, include one more term, of the
form (0/9u*) {T';u*ufR,}, which couples the hierarchy
to Einstein’s equations, etc. (T'%; are the well-known
Christoffel symbols.)

Finally we conclude these remarks on relativistic
statistical mechanics by saying that the possibilities
suggested in these papers are merely plausible and will
remain so until the difficult subjacent dynamical
problems be solved. In our opinion, a fully satis-
factory theory should include quantum effects and, in
view of astrophysical applications, gravitational
effects.
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The solution of the time-dependent neutron transport equation is a semigroup of linear transformations
acting on a Banach space. There are some ergodic theorems that can be used to describe the asymptotic
behavior of the solution under very generai conditions on the semigroup. The results are compared with

Wing’s famous approach.

I. INTRODUCTION

HE solution of the initial-value problem in neutron
transport theory (linear Boltzmann equation) leads

in some important cases to a semigroup of bounded
linear transformations in a certain Hilbert space.!—¢
A reactor R is defined on a bounded convex point set
in the n,-dimensional Euclidean space (n; < 3). The
endpoints of the neutron velocity vectors are in the
interior of an n,-dimensional sphere S with radius
Umax (1, < 3). All square integrable functions on the
point set R X S of the n; + n,-dimensional phase
space (4 space of statistical mechanics) form the
Hilbert space Ly(R x S). The solution of the time-
dependent neutron transport equation is to be found
in this space under the boundary condition that no
neutrons enter R from outside for all £ > 0. It turns
out to be an Abelian semigroup of bounded linear
transformations in L, with parameter ¢ > 0. One
possible representation of this semigroup is formed
by a Neumann series.*~® It makes a classification to
the number of collisions and can be used well during
a time interval short compared to the mean collision
time. Another representation that is apt for the
asymptotic behavior in times large compared to the
mean collision time is based on the spectral theory
of the nonsymmetric transport operator. Without
reference to the kind of representation of the semi-
group it is already possible to state some theorems on
the asymptotic behavior with the help of ergodic
theory. As it is done often in statistical mechanics,
R x §is divided into a finite number of cells labeled
1 to n. A special neutron distribution is an n-dimen-
sional vector h = (h,, - - - h,), h; > 0, h; meaning the

1 G. M. Wing, An Introduction to Transport Theory (John Wiley
& Sons, Inc., New York, 1962).

2 S. Albertoni and B. Montagnini, in Proceedings of a Symposium,
Karlsruhe (International Atomic Energy Agency, Vienna, 1965).

3 R. Bednarz, in Proceedings of a Symposium, Karlsruhe (Inter-
national Atomic Energy Agency, Vienna, 1965).

¢ H. Hejtmanek, Nucl. Sci. Engr. 25, 93 (1966).

5 H. Hejtmanek, in Proceedings of the Ankara International
Summer School in Transport Theory, 1965 (Academic Press Inc.,

New York, to be published).
8 K. M. Case and P. F. Zweifel, J. Math. Phys. 4, 11 (1963).

number of neutrons in cell i. Naturally this is only an
approximation; for an exact description we should
have a function in n, + n, variables of the Hilbert
space L,. But it suffices to get some features on the
asymptotic behavior under a few very general assump-
tions on the semigroup. Heavy use is made of Ref. 7.

II. THE DISCRETE u SPACE

The bounded set R x S in u space is divided into
n number of cells. Q = {w;, - - w,} is the set of all
cells, the ith cell is labeled w,. A special neutron
distribution is an n-dimensional vectorh = (4, - - h,).
The components h,; are the number of neutrons in
cell w;, h; > 0. The set of all h (4, real, not necessarily
nonnegative) form an n-dimensional linear space
H(£2). The neutron distribution with only one neutron
in cell w; is written e¢; = (0,+--1,--0). A partial
ordering can be introduced in H()
h<g:< h <Lg, forall

i=1,"n

H(Q) turns out to be a vector lattice. Supremum,
infimum, and absolute value of vectors are again
vectors defined by

(g v h); = max [g;, h]],
(g A h); = min [g,, )],

lgl: = lgl-
We have the decomposition of a vector h

h=ht —h, W =hv0, hm=(—h)VO.
If there is another decomposition
h=H —h, HvO, K vO,
we have
W >ht, " >h.

A norm is defined in H(£2).

Definition:
n

Ikl = 2, |h.

i=1

7 K. Jacobs, Lecture Notes on Ergodic Theory, Aarhus Uni-
versitet, Mathematisk Institut (1962/63).
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Of course, this is not the only way to make H({2) a
normed-space. Another possibility is

Il = (2 h%)é

as Wing! has done. |A]; has no direct physical mean-
ing, but |4 has: it is the total number of neutrons in
R x S, if h; > 0. Because of the equivalence of all
norms, | A||; (times a constant) is an upper bound for
the total number of neutrons. The norm |4}, comes
from an inner product

(glh) = glgihi’
Ikl = (k)2

This inner product has a physical meaning equaling
the number of neutron counts of a certain array of
neutron detectors, g; > 0 is the neutron density,
h; > 0 the weight function for the location and
sensitivity of the detectors.

The unit sphere ||#|| < 1is an octahedron for n = 3.
We have the triangle inequality for all norms:

lg + Al < ligl + liA].

The following relations are true for this special norm:

lg + Al = ligh + Al, >0, g>0;
I = A+ (A

The convex hull of the basis vectors e;, the set

n

V={h|h2_>_012h,-=1,

i=1
is the set of all neutron distributions with total
number 1. V'is a simplex with vertices in e;.

III. THE NEUTRON TRANSPORT PROCESS

Our aim is to find the time behavior of a neutron
distribution % given at time ¢ = 0. The neutron trans-
port process is linear, so is the neutron transport
equation and the superposition principle is valid. We
get a set of linear transformations G = {7, | t >0}
This set G has some general properties that are
shared by the semigroup of the transport equation
and that are physically evident. A list of these
properties follows,

(a) G is a set of n x n matrices T, = (T ).

(b) T, is a linear transformation of H(Q) into itself,

(c) TQ can be defined as the probability that a
neutron from cell w; will reach cell w, after time ¢.
T}P is nonnegative.

(d) Because of the uniqueness of the solution of the
initial-value problem we get

Ttth, =T, e+, )]

HANS HEJTMANEK

In other words: T, forms an Abelian semigroup with
unit element 7.

(e) After a neutron pulse has been started at time
t = 0 in a cell, the whole reactor R x S will be filled
with neutrons after a certain time, and in every cell
there will be a positive number of neutrons. This
time 7 can be approximated by

@

with d the diameter of R. This fact can be seen easily
from the Neumann representation.®-® Then the semi-
group has the property

T= d/vmax s

3

(f) TP are continuous functions in ¢ > 0 for all j, k.

We restrict ourselves to the continuous case with
parameter ¢ > 0. In the discontinuous case G would
be the cyclic semigroup {T,, T, T%, + - -} of powers of
one transform 7. If

T >0 forallt >+ andallik.

3

T =1,
k=1

then T, is called stochastic. Such matrices occur in
diffusion processes of particles enclosed in a container.
In the case of neutron transport this does not occur
because of leakage, absorption, and fission.

In the linear n*-dimensional space L of all linear
transformations of H(Q) into itself, a norm can be
introduced—the operator norm.

Definition:
1P| = sup ||Phij

2] < 1.

Geometrically [[P|| can be found easily: the unit
sphere is deformed by P linearly. Then we look for
the least unit sphere containing this set. We only have
to compute Pe, , Pe,, -+, Pe, and find the minimum
of the norms. If this matrix has nonnegative elements,
it suffices to find

@

[P = sup || Phl,
Ikl <1, A 2>0.

For a stochastic matrix we have |[P| = 1. If [P} £ 1,
P is called a contraction on H(Q).

It is trivial that this norm is a continuous function
in L, the product is jointly continuous in P, Q €L,
i.e.,, L X L is mapped in a continuous way onto L.
Moreover

®)

IPRI < IP| IRI," B e H(Q);

(6)
POl < 1Pl Q.



SEMIGROUPS AND TIME BEHAVIOR OF A REACTOR

IV. THE CRITICAL REACTOR

From now on, G is a semigroup of matrices satis-
fying (a)(f). The following three cases are possible:

(1) lim sup || T,e,} = co. )

t— oo
This is true then for all e, , because
Te,=oe 4+ aze,, al o, >0;
1Tl = o 1 Toenll + + - + o, 1 T enll-
In addition

limsup | )| = 0.
t—w

®
Otherwise, there would exist an upper bound X,
7| <K forall >0,
ITe,| <K forall t>0,

contrary to (7). The total number of neutrons in the
reactor increase infinitely for every initial distribution;
this is the behavior of a supercritical reactor.

@ 1im sup | T, < Ko,

=

liminf | T,e, ] = 0. (9)
t— o

This is true then for all e,, because
T,.el = O(lel + e + anen, all OLi > 0,
I Ti.eill = o 1 Tpsenll + ¢ 0« 4 oy [ Ty,

lim inf of the left side disappears, so does every one on
the right side. In addition

liminf || T, = 0. (10)

Otherwise there would exist to every T}, a h, > 0 with
Il = 1;
IThl = T = K >0,
=l + -+ alPe,, all >0, Zagt’ =1;

i=1

ITh = 3 ol I el

lim inf of the right side disappears, and so does that
on the left side. This is the behavior of a subcritical
reactor.

(3) The critical reactor:
0 < K; < liminf | Toe,fl < lim sup [Tl < Ko, (11)
it~ w t—

or equivalently,
K STl < Ke- (12)

The semigroup G < L is norm bounded (and condi-
tionally compact?). We can form the closure G of it.

8 Definition: A set is called conditionally compact, if its closure is
compact. In a finite dimensional space the concepts bounded and
conditionally compact are equivalent.
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It is compact, bounded with the same bound and
Abelian, if G had these properties.

V. ASYMPTOTIC BEHAVIOR OF THE
CRITICAL REACTOR
For every & € H(Q) the mapping P — Ph of L onto
H is linear and continuous. The image of G is called
G orbit,
Gh = {Ph| P €G}.

This orbit is conditionally compact if G is. The
closure G of a conditionally compact set G < L yields
Gh as the closure of Gh

Gh = Gh. 13)
Definition: A set M < H is called G invariant if it
contains the G orbit of each of its points.

Definition: A set is called minimal G invariant, if
M is closed, M is G invariant, and M is minimal with
this property, i.e., for every closed G-invariant set
N < M, it follows that N = M.

Definition: r € H is called G invariant if the orbit
closure Gr is minimal G invariant,

Lemma 1: If r € H is G-reversible, then for every
pair P, 0 € G, there exists a R € G such that

RPr = Or. (14)
Proof. GPr is closed, G invariant, and GPr < Gr.
Because of the minimal property it follows GPr = Gr,
so there must exist a R such that RPr = Or.
Take O = I; there exists a R such that RPr =r.
This means that G acts like a group on r.

Definition: fe H is called a G-flight vector if
0L Gf.

Definition: R is the set of all G-reversible vectors,
F the set of all G-flight vectors.

Lemma 2: There exists always a G-reversible vector
in the orbit closure Gk of an arbitrary / € H.

Proof. See Appendix A.

The sets R and F are never empty, at least they
contain the point zero. We want to prove more:
that they are linear G-invariant subspaces and that H
is their direct sum. First, Fis a linear space: if g, h € F,
then P, J € G exist such that

Pg=0, Oh=0.
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Then
PO(f+g) = OPf + POg = 0.

Second, H can be represented as the direct sum
H = R + F; this means that every 4 € H can be written
asasumof h =r + f,r € R, f € F. In addition, r € Gh.
For if we choose a reversible r, € Gh (Lemma 2) and
a Pe G with Ph = r,, we can find R € G such that
RPry=ry, (Lemma 1) and put Rry=r and f=
h — r. We get r € R (because r, was), r € Gh (because
r = RPh) fis a flight vector

Pf=Ph—ry=Ph—PRry=1ry~ry=0.

To prove linearity of R is more difficult.

The Splitting Theorem: G is a norm-bounded
Abelian semigroup of transformations acting on H.
Then the set R and F are G-invariant linear subspaces
of H, and H is their direct sum

H=R+F RNF=I0. (15)

The mappings
(16)

are orthogonal linear idempotents commuting with
G and form a decomposition of /.

Pp:h—r, Pph—f

P123=PR’ PRPI"=P]"PR=0’ P%'=PF;

PR + PF = I,
PRP=PPR’ PI,vP=PPI,' (PSG).
Moreover P, € G. For proof, see Appendix B.

an

VI. UNIQUENESS OF THE EQUILIBRIUM

Corollary 1: R has dimension one. The equilibrium
distribution r (a fixed point of G) is unique. Assume
R has dimension at least two, then Pge, =ry,
Pge, = r,, 1, r, being linearly independent.

PpTe =ry, forall 1=0;
PgpT.e, = T,Pre, = a\Pre; + ayPre, + -+

=ary +ayr, + - al a, >0,

contrary to a, = 0.

Corollary 2: The approach to equilibrium goes
with exponential speed. This can be shown by the
following argument: There is a T, that shrinks the
intersection M of the unit sphere £ and F by one half.
The set M = E N F is compact. Then for every
he M there exists a finite sequence f;, -, f,€F
such that 4 is in a 1/4K,-neighborhood of some f;.
Choose T, such that

1
IT Al < IK,

HANS HEJTMANEK

andput 7, =T, T, (f=1+""-+1,). Then
for an arbitrary he M

1Tk < IT k= Ol + 1T, fil
STy b = I + I T, T 3,
< Ky(—1/4K3) + Kz(—l/4K2) = }.

For t = nty and all h € M we get
1Tl < ()"

For an arbitrary ¢ = ¢+ nt,, 0 <t' <ty and all
heM

T,

o Tehl S D" Tkl < A" Kp < Koe
for a suitably chosen K and «. Finally if 4 is arbitrary

(by the splitting theorem)

h=r+/,
ITh —ril < Ks lIf ]l e %%

VII. THE SLAB REACTOR

As an example let us consider the simple case of a
slab reactor R = {x| —a < x < + a} with mono-
energetic neutrons S = {u| -1 <u < +1}L. Rx S
is a rectangle in the two-dimensional phase space. It
is divided by lines parallel to the axes into cells
(Fig. 1). The cells are numbered 1-n. Figure 2 shows
the space H(QQ) for n = 2. The simplex V is a part of
a straight line; also the one-dimensional subspace R
is drawn. The orbits of Ge,, resp. Ge, approach
ry, resp. r, on R. ry has a total number of neutrons
less than r, . The reason is in the special choice of e,
and e, . The pulse started in e, at time ¢ = 0 will loose
many neutrons through the boundary x = +a before
it builds up a critical distribution, in contrast to a
pulse started in e, that will first increase the number
of neutrons before loosing neutrons by leakage
through the boundary.

M

+1

Wy

+00 X

Fi1G. 1. The u space of a slab reactor.
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5 €,

w;y

K, ] K,
F1G. 2. The orbits in the space H for n = 2.

VIII. COMPARISON TO WING’S METHOD

The generalization to the semigroup that represents
the solution of the linear Boltzmann equation is
obvious. [Assumptions (a)-(f) are clearly satisfied.]
The question as to whether the splitting theorem
remains true in this general case can be answered in
the affirmative.? H can be chosen as the Banach space
of L,(R x S)integrable functions or the Hilbert space
of Ly(R x S) integrable ones. Because of the equiv-
alence of all norms we get

K, <7l < K,

Ky S ITlly < K
and vice versa. Wing! has given a representation of
the semigroup that contains explicitly the decomposi-
tioninto H= R+ F.

N
h(x, p, 1) = Y Vbl )y, + B.f,
i=1

Pr>B2> 2 Bn-
In the case of the critical reactor 8, = 1,

h=r+1f,
’=(h1'l’:)'/’1, f=h—r;
ITh = rl < Ky || f].
APPENDIX A

If the orbit closure of AGh is closed, G invariant,
and Gh is minimal, then we are ready. If it is not, then

9 K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie
(Springer-Verlag, Berlin, 1960).
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there exists a proper subset N; < Gh that is closed
and G invariant. For every such chain Gh > N, >
N, > - - -, there exists a lower bound N = 2, N,
that is closed (because of compactness) and G invariant.
By Zorns Lemma there exists a minimal G-invariant
set in Gh.

APPENDIX B

Every P e G induces a continuous mapping of G
onto itself by multiplication 0 — PQ. So G may be
considered as an Abelian semigroup of continuous
mappings of the compact set G onto itself. Again we
get the existence of at least one minimal G-invariant
subset Gy < G (Lemma 2). G, is uniquely determined.
If G, is of the same kind, GG, = {PQ|PeG,,
0 € G,}, which is compact as the continuous image of
the compactum G, X G,, would turn out to be a
G-invariant subset of G, N G; and thus G, = G,. If
P e G is arbitrary. PG, is compact and G-invariant
and thus PG, = G, (P € G). Thus we see there is
division in G,. Even for every Pe G, O € G,, there
exists an Re G, with PR = (. Applying this to
P = (2 and putting £, = QR, we obtain the existence
of an idempotent £, € G,, £2 = 0?RR = QR = E,.
We see that the space of flight vectors is annulated
by each @ € G,. Indeed if we choose f € F, and then
P € G with Pf = 0, there exists a R € G, with PR = 0
and we obtain Jf= PRf=0. As a consequence
F= (00, 0 € G,, and F is a linear space.

Next we show JH consists of reversible vectors for
any 0 € G,. Again if we choose h € H and P € G, and
then R € G, with PR = Q, we obtain for r = 0h,
RPr=RPOh= Qh=r.

Finally we show that each § € G, maps the set R
of all reversible vectors onto itself. Now if we choose
reR and Pe G such that PQr = r, then we have
QPr = r and Pr € R. Combining our last two results
we obtain 0H = R, § € G,. As aconsequence R turns
out to be a linear space. It follows: if Eye G, is
idempotent, then

R=EH,F=E'0 = (I — E)H,

and all elements of R remain fixed under E,. As
H = R + F, E,is uniquely determined, it also follows
that R N F = {0}. Consequently for any heH,
h=Eh+ (I— E)h=r+ fis the unique decom-
position of 4 and we obtain Py, = Ey, Pr = I — E,.
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This work develops a straightforward technique for giving an upper bound to any eigenvalue of the
one dimensional Sturm-Liouville problem. It is shown that any trial function that fulfills the proper
boundary condition of the problem and possesses the same number of nodes as an exact eigenfunction
of the problem can provide an upper bound to that eigenfunction’s eigenvalue. Application of the above
technique is made to provide a one-sided bound to quantum mechanical scattering phase shifts.

I. INTRODUCTION
CONSIDER the differential equation

(d/dx)(p dyldx) — (g — Ar)y =0 ()

in a region R, a < x < b, in which p(x) and r(x) are
both positive in the interior of R, with homogeneous
boundary conditions prescribed at the end points
(a, b);

(ay + B dyldx),_, = (ay + pdyldx),_, =0, (2)

or if p(x) = 0 on a boundary, y and dy/dx must only
be finite, or if p(a) = p(b) the periodic boundary
conditions y(a) = y(b) and dy(a)d/x = dy(b)/dx are
sufficient.

Then (1) has solutions y,(x) for only certain values
of A = ;. The spectrum of eigenvalues with a finite
smallest member 4, and extending to +4o0 are
extremals of the expression

_ Jrlp(dy/dx)* + qv*] dx
Srry® dx
and consequently any trial function y‘%) inserted into

(3) provides an upper bound to 4,, the smallest
eigenvalue?;

Yl

3

{rlp(dyr/dx)® + qy7] dx
SRy dx '

Similarly if a trial function can be guaranteed to be

orthogonal to the first n eigenfunctions in the sense

f ryrpy; dx, &)
R

then it can be shown that y'¥’ provides an upper
bound to the n + 1 eigenvalue using (4) (Ref. 2).
However, in general no eigenfunctions are known
exactly in a problem where variational methods are
employed, so estimates to higher eigenvalues made

A < “

* F. B. Hildebrand, Methods of Applied Mathematics (Prentice-
Hall, Englewood Cliffs, New Jersey, 1965), 2nd ed., p. 90.
2 Reference 1, p. 205,

with trial functions orthogonal to the trial functions
for the lower eigenvalues will not be upper bounds to
the true eigenvalues.

It is the purpose of this note to present a straight-
forward method for providing upper bounds to any
of the eigenvalues of (1).

II. UPPER BOUNDS FOR ANY EIGENVALUE

Consider the problem specified by (1) subject to
the appropriate boundary conditions. The true
solutions of (1) have the properties®

(d/dx)(p dy;/dx) — (¢ — rd)y; = 0, (6)
f ryy; dx = 0, @)
R
dy; dy;
f [P‘!' okl + qyz'yf':l dx = 4,9;; ®
Rl dx dx

and are extremals of (3).

In one dimension each eigenvalue is uniquely
specified by the number of separate regions R, into
which R is broken, each region separated from its
neighbors by the nodes (zeros) of the eigenfunction.*
The lowest eigenvalue of (1) has an eigenfunction with
no nodes.

For each region R, the eigenfunction is a nodeless
eigenfunction satisfying the same Sturm-Liouville
differential equation with homogeneous boundary
conditions. The nth eigenvalue 1, with eigenfunction
yu(x) is then the lowest eigenvalue of the same
problem for each region R, .

If the nodes of y,(x) were known, an upper bound
to A, could be obtained by picking any region R, and
using the usual variational technique to find an upper
bound for the region’s lowest eigenvalue. However,
in the general case the nodes of y,(x) are not known.

2 Reference 1, p. 89.

4 R, Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New- York, 1937), 1st English ed.,
p. 454.
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Assume that a trial function y(x) with the same
number of nodes as the desired y,(x) is being used to
estimate A,. In general the nodes of y,(x) do not
coincide with the nodes of y,(x). The following
theorem is now proved:

Given a region R divided into n > 2 regions R, if
the Sturm-Liouville equation is solved in each region
R, for its lowest eigenvalue 2® with the boundary
conditions y(x) = O on all interior boundaries and the
original homogenous boundary conditions on the
exterior boundaries, then

max {A*} > 4., )

where 4, is the nth eigenvalue of the same Sturm—
Liouville equation on the whole region R.

Proof: Let p; be the interior boundary points of the
regions R,. Let g; be the nodes of the exact eigen-
function y,(x). Using the known result® that the
eigenvalues of the Sturm-Liouville problem mono-
tonically decrease with enlarging a region, we have
the following:

The necessary condition that A" < 4, is that the
first boundary point of the divided region be greater
than the first node of y,(x); i.e.,

|2 (10)

Similarly, the necessary condition that A{® and
AW < 2, 1is that

P 2q and py >qs. (11)
These conditions can be restated until we have
the necessary condition that AV, 4(* , - - -, A" < 4,
which is that
P1 2 qls

P 2 G,
. . (12)

Pra 2 9na-
But the nth region has the exterior boundary x = g,

and the condition p, ; > ¢, demands by the
monotonicity of the eigenvalues with region size that

M >, (13)

Therefore at least one A{® must be greater than or
equal to 4,.

With this theorem it is now straightforward to
obtain upper bounds to any eigenvalue of the Sturm-
Liouville equation over the whole region R. Pick a

5 Reference 4, p. 421.
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trial y(x) with the same number of nodes as the
desired y,(x). Take y,(x) in each nodeless region R
and calculate an upper bound to that region’s
lowest eigenvalue;

« dy r/dx)? »ld
i I/t ol ds
fRa ryp dx
Using (4) we have
AP > A (15)
and consequently
max {2} > max {A"}). (16)

But by use of the theorem proved above, (9), we have
max {12} > 4,, 17

the desired result and a computable upper bound to
A,

To get the best possible upper bound to 4, the
trial function y,(x) can be adjusted until all the A%
are equal.

To make more clear what has been shown in this
work, a comparison with the work of MacDonald® is
made. MacDonald showed that a trial function y(x)
made up of n or more independent functions will
provide an upper bound to 4, by means of diagonal-
ization of an n’ x n’ (n’ > n) matrix in the Rayleigh-
Ritz procedure.

In this work it has been shown that any trial
function possessing exactly n — 1 nodes will give an
upper bound to 1,. For large n the procedure devel-
oped here will involve substantially less labor than the
method of MacDonald.

III. GENERALIZATION TO THE
N-DIMENSIONAL CASE

The technique can be generalized to the N-
dimensional Sturm-Liouville equation. There is an
important qualification which arises, however. In two
or more dimensions the eigenfunctions of the Sturm-
Liouville equation are not uniquely specified by
their node topology.” Consequently, in an N-dimen-
sional generalization of the proof given above, there is
no guarantee that an upper bound to any specific
eigenfunction of that given node topology will be
obtained.

All that can be proven in the N-dimensional case is
that the procedure presented in Sec. II of this work
will yield an eigenvalue estimate which is an upper
bound to the lowest eigenvalue of the family of
eigenvalues belonging to the given node topology
of the trial eigenfunction.

s J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).
7 Reference 4, p. 455.
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IV. BOUNDS ON SCATTERING PHASE SHIFTS

In the quantum-mechanical central potential scat-
tering problem the radial wave equation for the Lth
partial wave is
(@ugjdr®y — [L(L + D)[r*luy, + 2M(E — V)u;, = 0,

(18)
where u =ry. It is assumed that the potential
vanishes outside some range r = a.

If the radial wavefunction is solved in a large
spherical volume of radius R with the boundary
condition

U(R) =0, (19)
then the exterior solution for u(r), r > a, is a phase-
shifted free-particle solution with the phase shift
approaching the true scattering phase shift as R — .

A method for obtaining a one-sided bound to the
scattering phase shift d; is now presented which is
analogous to that of Percival.®

Let r = r, be an estimate of the first wavefunction
node outside of the potential region (ry > a). A trial
wavefunction is now shown to provide a bound on
dr. For the region ry < r < R, the proper phase-
shifted free-particle solution of

(@Pupjdrt) — [L(L + 1)/r*lug, + Kup, =0 (20)

is assumed where k? = 2ME. For finite R the k’s
which fulfill the boundary conditions

u(ry) =u(R) =0 20

form a discrete spectrum, but when we take the limit
R — oo this spectrum becomes dense.

For the region r < r, a trial function with any

chosen number of nodes can be used. The proper
boundary conditions on the trial function are

lim u,(r) is finite, (22)

r—+0
and

] uqp(ry) = 0.
The energy estimate

1 {dup®  (LIL+1) .

A (dur)  (KE+D ey
faa[zM(dr)J’( st )"T] ]
f u% dr

Rq
(24)

is then calculated for each nodeless region R, of the
interior interval 0 < r < ry. For the exterior trial
function the free-particle phase-shifted wavefunction
appropriate to the energy and wavenumber given by

max {E}'} = k¥2M (25)
is selected. [In the limit R — co a wavenumber k can
be found arbitrarily close to fulfilling (25).]

8 1. C. Percival, Proc. Phys. Soc. (London) A70, 494 (1957).

(23)

(a) __
Er =

KENNETH NORDTVEDT

FiG. 1. The graphical solution of (31) for a repulsive potential.
The movement of the curve intercept from the x-axis intercept
indicates the negative phase shift of the potential.

By the theorem proved in this work, (9), (25) gives
an upper bound to the energy for a state of the total
number of nodes in the trial function constructed
above. Since the energy of the state is a monotonically
increasing function of the selected node location rg,
while for large R the energy is changing infinitesimally
with changing r,, ro is an upper bound to the node
location for the exact scattering function at the
energy given by (25).

To translate the bound on r, into a bound on the
phase shift of the scattering wavefunction, consider
the most general exterior free-particle wavefunction,®

wr(r) ~ [cos p, jr(kr) — sin 8 (kr)].  (26)
Requiring (26) to have a node at ro gives
tan o7, = jr(kro)/nzlkro), (27

where j;(x) and 5 (x) are the spherical Bessel functions
and spherical Neumann functions of order L. Equation
(27) then gives a one-sided bound on the phase
shifts d; by expressing d;, in terms of r, and the
wavenumber k.

To summarize the procedure consider the following
steps.

(1) Pick anry > a.

(2) Pick an arbitrary trial function on the interval
0 < r <r, which fulfills the boundary conditions
(22) and (23).

(3) An energy and wavenumber is determined by
(25).

(4) (27) then gives a bound to the phase shift at
wavenumber k.

The procedure developed above is somewhat more
general than the similar work of Percival.® Percival,
following the work of MacDonald,® employs the
Rayleigh-Ritz procedure and the diagonalization of
an n X n matrix to obtain his trial functions. It has
been shown here that any trial function provides a
phase-shift bound.

® L. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1955), 2nd ed., p. 104.
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/

[

*

-

FiG. 2. The graphical solution of (31) for a weakly attractive
potential. The movement of the curve intercept from the x-axis
intercept indicates the positive phase shift of the potential.

V. APPLICATION TO AN S-WAVE PHASE-
SHIFT CASE

For § waves, (24) gives the relation between r; and
k for a trial function y(x),

T0 2
f [(1@) + 2MVu2T] dr
0 dr

K= - (28)
f u’p dr
0
A simple trial function to use is
up(ry = sin (mrfry), 29)
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» Vo

Lim. K> 0

A
Fi1G. 3. The graphical solution of (31) for a strongly attractive

potential. An intercept remains at finite r, for the limit k = 0,
indicating a bound state of the potential exists.

which, when used in (28), gives

2
k=T = 6 sine (ﬂ) dr
) T'o To

(30)
or

(kro)? — m* = 4Mr, f V() sin? (ﬂ) dr. (31

To

Figures 1-3 plot the solution of (31) for the three
cases of a repulsive potential, weak attractive potential,
and strong attractive potential. Figure 3 gives a
solution of (31) for r, finite and k = 0 indicating a
phase shift in excess of 4w, or a bound state.
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We consider the temporal evolution of the BBGKY hierarchy in the Boltzmann approximation

for spatially homogeneous nonequilibrium situations, in the absence of initial correlations. For times
of the order of the mean free time or greater, the single particle function f; is found to be of the form

fi=f1+¢ft+ elinelfl + O

with e = nr] (n is the density, r, the range of binary interaction) and f{, 1, and f } of order unity. For times
less than the mean free time, with ¢ in units of the duration of a binary interaction, f, is of the form

fi=[2+ eft + enn)ft + Oe).

JULY 1967

In both cases the same formally higher-order binary correlation functions are neglected.

I. INTRODUCTION

N a previous paper,! the usual low-density expansion
applicable to a Boltzmann gas was carried out,
using a multiple time and space scale technique, to
yield an expression for the lowest-order two-particle
correlation function on the scale of the collision time
and the mean free path. In the present paper this
technique has been extended by introducing streaming
operators which are generalizations of the operators
first used by Bogoliubov? and which allow higher-
order corrections in e to the correlation functions to
be obtained. (Here we note that € = nr3, where n
is the density and r, is the range of the binary potential.)
The new result which this technique yields is the
appearance of correction terms which are logarithmic
in the density. It was pointed out earlier! that terms
which varied as f~! on the interaction time scale
appeared in the correlation functions. Clearly, on
going to higher order in the expansion, such terms
have to be integrated and yield In ¢ behavior.? In the
present paper the apparent divergence from this
source (among others) is removed by the introduction
of generalized streaming operators which allow us to
carry out the expansion for times on the collisional

* A preliminary account of this work was reported at Washington,
D.C.: Bull. Am. Phys. Soc. 10, 531 (1965).

L E. Frieman and R. Goldman, J. Math. Phys. 7, 2153 (1966).

2 N. N. Bogoliubov, in Studies in Statistical Mechanics, J. De Boer
and G. E. Uhlenbeck, Eds. (Interscience Publishers, Inc., New York,
1962), Vol. 1, p. 5.

3 For further discussions of the In ¢ behavior see: J. Weinstock,
Phys. Rev. 132, 454 (1963); J. R. Dorfman and E. G. D. Cohen,
Phys. Letters 16, 124 (1965); J. V. Sengers, Phys. Rev. Letters
15, 515 (1965); K. Kawasaki and 1. Openheim, Phys. Rev. 1394,
1763 (1965); J. Weinstock, ibid. 140A, 40 (1965); L. K. Haines,
J. R. Dorfman, and M. H. Ernst, ibid. 144, 207 (1966).

time scale. An elne behavior is obtained with
correction terms of order e.

A further result which appears naturally in the
course of this work is that the complete Choh-
Uhlenbeck collision operator is derived. In Ref. 1 we
established this result with two caveats: (a) that

. — o A
lim e HWgiyy, et, - - )
t—tg— o

vanished, and (b) that
lim A(t — t,)

. t—tg—> o
vanished.

In fact we show (by using the generalized streaming
operator technique) that the appropriate modifications
of conditions (a) and (b) are satisfied to order e.

In Sec. II the usual hierarchy is given, but higher-
order terms are included with the usual lower-order
terms, so that more convenient forms for the solution
are obtained. In Sec. I1I higher-order corrections for
the two- and three-particle correlations are obtained
and the Choh-Uhlenbeck collision operator derived.
In Sec. IV the In e terms are obtained and shown to be
convergent, and in Sec. V the contributions to the
kinetic equation are obtained. A number of appen-
dixes with details for the formal manipulations and
estimates are also given.

II. EQUATIONS OF THE HIERARCHY
UP TO s =4
In this section we write the equations of the
BBGKY hierarchy for a spatially homogeneous
system in a form which is, particularly suited for
carrying out the higher-order calculations we need to
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do. The notation and units are identical to those used
in Ref. 1. The hierarchy is written as

of. :
Lt ifo= 3 [dRulhsfins @D
where
d93+1 = dxs+1 dv,+1 . (2.2)
As usual we introduce
&=h,
=fo —fift> (2.3)
etc., and find
ag £ s—1
a; + Hg, z z 29.]&(1, )ga——a(ja t )
j=1i<3j
= Zl 0£,s+1[:21gu(ia v )
X upals + 1,0 + gm] Q. (24)
To proceed with the expansion we write
8 = iemg?(xl' T Xg, V1t Vg, 0 €Xy t tt €Xy, €l )a
m=0
2.5)
H,= Y "Hr, (2.6)
m=0
and
d 0 ) 2 0
— == — —t e, 2.7
- Sa et 27)
Here
Z v; -2 26, (2.8)
i=1 ax =1di<i
with
, = 2200 (i _ _3_) (2.9)
ox; dv, 0Ov;
and
HP =3 ™y, - , m>1. (2.10)
i=1 Oe™x,

The expansion of (2.4) which follows upon using
(2.5)~2.10) is not unique since terms which are
formally of higher order in € can be kept in the lower
order equations. We exploit this freedom in the
following to enable us to get bounded solutions more
easily.

It is convenient to write

g =(g).+e(g)s, s=1,2,3 (211)

since we expect that In ¢ behavior will appear. Thus
in (2.11) we allow for (g!); being of order In € while
(g ). is of order unity.

- The expanded equations of the hierarchy can now

1411
be written as:
s=1:
0g8fot = 0, (2.12)
Aede % [anpust, 1)
0gi | 9(g1). , 9(g)s a 1
ot t e Oet t o ot te aet
a(gl)ﬂ Ogt 2 a_gz ...
te o Tt st
= f d0u0,,(g} + egl + g2+ -+ ). (214)
§=2:
(93/0f) + H3gl — 01,8787 = 0, (2.15)
a(gé)a g3
H}
ot ( 2)a+a + 2gz+€a( )(gz)a
+ EHz(gz)a 012[81(81)1 + (gl)agll
2
= gl 0:alg8 + 2l(Dg2 + gi(3)gd1 dQ;, (2.16)
a 1
%D+ ey — OulelaDy + (&Dpsll = 0, (2.17)
g3 9(g3) dg?
S+ High+ e =2t cHY(g, + af2
+ 5H282 012(8181 + 8181 + 818
= z 13[(g3)as + (ga)ans + g(ll(3)[(g2)as(l) + (g2)ans(l)]
+ (gl)a(l)g2(3) + gl(l)[(gz)as(3) + (g2)ams(3)]
+ (2):(3)82()] dQs. (2.18)
s = 3:
228
aga + H3gd — 0,,[e2(D)g} + g2l
— 03lg2(1gs + g103)g3]
- 023[g2(2)g2(2 3) + g‘i(3)g‘é(1 2] =0, (2.19)
(gd).
(gf) 0( 3)a a( ) 385 + € (g3)¢ + €H3(g3)a

— O1,[g(1)(g2)s + (gDa(1)gs + g1(2)(g2)a + (2D2)gl]
13[81(1)(82)a + (gl)a(l)g2 + (gl)a(3)g2 + g1(3)(g2)a]
- 623[81(2)(g2)a + (81)4(2)82 + (81)4(3)82 + g(1)(3)(82)a]

3
= gl 0.alg? + 25(DgU4) + 2%(4)g3(i)

+ 2 £J, 9ga(i, k)]1dQ,. (2.20)
kja::,';'iix
s=4:
ag4 e
ZE > 0,;181()g8U, «, B)
a lj—lﬂ::ﬁt:l

+ gi(Ngs, @, B) + g3, )ga(J, /)l = 0. (2.21)
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Note that in writing (2.12)-(2.21) we have not
introduced €'t and €*H, n > 2 variations since we
have shown in Ref. 1 that the asymptotic solution
appears to have no such long-time, long-space
variation. Further, we have used the decomposition

(83) = (83)as + (88ans- (2.22)

We show that (gl),, contributes secular terms while
(g3)ans does not.

III. FORMAL SOLUTION OF ‘“REVISED”
HIERARCHY

The philosophy of the calculation is, of course, to
solve the above equations order by order. However,
as we continue the expansion we wish it to hold for
longer and longer times. Thus we must be prepared to
remove secular terms by balancing them against
functions which are undetermined, and we must
estimate the error terms to show that the various
functions are bounded.

In Ref. 1 we determined g) fully. However, the
determination of g! was only valid for times ¢ < 1/e.
Our first task, therefore, is to construct an expression
for g} valid on the time scale t ~ I/e. g} has been
decomposed into (g3), and (g3); . A formal solution for
(gl), can easily be obtained but (g3); must be deter-
mined by removing secular behavior from gi. g in
turn depends on known functions and (g3),. Thus
(g3). must be determined. In fact it is shown that it is
sufficient for our purposes to determine gi as a
functional of (g3), .

A. Determination of (g}),

We now go on to calculate [g(¢, ef)], subject to the
initial condition
[£:(0,0)L, =0

and then seek to write

[gx(t, D], = [g3(1, )]s + [82(1; D]gney  (3.2)

where [gi(¢, €t)],, produced a secular contribution to
(2.18).
From Eq. (2.16) for |xy,| < ry we have

3.1

t
1 | LH e d e(3lac)1(t—1)
(ghs = j -ttty
(]

_ a_gg o/ 1 1 0
X et + 012[g1(81). + (81).81]

2
+3 [dubalss + eles + g;’(z)g‘;l} dr.
3.3)

It is apparent that this is the same as the Choh-
Uhlenbeck triple collision term on neglect of the

R. GOLDMAN AND E. FRIEMAN

terms (eH} + «(0/0et)) within the exponential factor,
and in the limit ¢ — co.

For [x;5| > ro, x,, not almost |[v,, (i.e., trajectories
such that Particles 1 and 2 have not interacted in the
past), we have

(gé) =fte—[H2°+eH2‘+c(a/aa)](t~t’)
0
2
x {z f 0led + g2DEl + g(3)el] dﬂa} dr.
(3.4)

For |xy| > ry, X, almost || v;, (i.e., trajectories
such that Particles 1 and 2 have interacted in the past):

¢
| THreH vt 3/0e0)t—t)
(g2)ar _‘f € 2 ¢ ¢
0

o0g? ,
x {— 2B HighS(' — %) + Oua(glel + ele]
1
2
+3 f B.algd + 222 + 22Dl dna} dr

(3.5)
with ¢* the maximum value of ¢’ such that

04—
eI U=1g £ 0,

[We have S(x) =1, x > 0; S(x) =0, x < 0.]

We now seek to divide (3.4) and (3.5) into parts
which contribute to secularities in g2 and parts
which do not. To this end we note for |x;5| > 2r,:

0(; . I . 1
gut') = e [Ha iAo Ciomd ol — 7) + g (iD)gdt' — 7)

+ gl(3)g3(t’ — M) — [g(Dgdr) + g2(3)g(t)].
(3.6)

(Throughout this paper we consider only binary
potentials such that there exists an upper bound 7
of order unity to the duration of all binary inter-
actions.)

Also for [x;s| > 1o, on using (2.19), the integral
within (3.4) and (3.5) may be rewritten:

2 90 3 P
5[ [z s8] e
=1 Jlwgl<r LO? iz X
(j=3—i)

9 d 9\ 3 2
_ (o, 8. & dQ
(at' o ox, o 3x2) igl flml“ﬂ B

d
vy — g3dQs. (3.7)
Ox,

On using (3.6) and (3.7) in (3.4) we have

+3

i=1 J|ag| <ro

(g;)u = (g;)as + (gé)am’ (38)
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where we define

t 2
1 — —[H2 +eHal+e(a/2e) 1(t—1")
(82)as —f et ! Z U3y
] i=1 Jlziy'|=ro

(§=3—1)
x [E—[Hao(i,3')+v,--(a/aa:,-)]r( %%t — 1)

+ 82308 — ) — gDE) i | 1) o dus,} ar

39
and (39)

t
e—[H2°+zHgl+e(3/ %et) 1t

(g;)am =f
° 2

> f g5 dxydv, | dt’
i=1 N |2i3] <ro

X i[em.%em‘ma/a(emw

ot
(j=3—3
t
o 1
_ 3l det) J(t—t'
+f o TH +eHy +e(3 %) 1(—t') Uge;
0 i=1  J2’|=r0

(§=3—1)
__ 0, g (9]
X [e LHy (300 ij)]rgg(t: — 7YX | vi3)

— g3t (X — || 0ip)] X dog dvg dY’

——J‘te_[H2°+eH21.}—€(a/3£t)](t—-i')(eHé + €i)

0 Jet
2

x Y gt dQ, dt'. (3.10)
i=1J @3] <7

[At this point we note that throughout this paper
the combination |x,| = ry; X, || v, denotes that
particles a and f are at the distance r, beyond which
the binary force between particles vanishes, and that
o and B are moving apart; the combination |x,4| = r,,
Xap — || vgg (€., X,q || —0,5) denotes the same separa-
tion, but that « and § are approaching each other.]
For (3.5), on using

a 0
%82 1 Higs

Oet
2

--3 0] 2338 doy dvy, (3.11)
=1/ |25’ |=ro;xig’ |95’

we note

(g2)o(x12 almost || v;) = O(1). (3.12)

B. Determination of (eg})s

Now, we first determine the form of (g}), for
|x;5] < ro, [X12] > ro. Parts of this function determine
the secular behavior of (2.18) which, in turn, is used in
the definition of (eg})s.

From (2.20) one obtains on using (2.12), (2.13),
(2.15), (2.16), and (2.21), and neglecting terms of
order €:

@t
= e H{(gh)y(t — T, ) + gDt — 7, €f)
+ [gi()].g% + 2303)(g2). + [21(3)].82}
— {g%i)(gDa(t, €t) + [gl(D].g8 + 81(3)(gd)a
+ [81(3)].8%} + 0. (3.13)
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Specifically we note

¢
0= f e HS = 4 1) gy (3.14)
{—r
with I given by the integral term of (2.18) and / a
linear function of the integral terms within (2.10) and
(2.13). We note that in (3.13) and (3.14) we have
T = O(1). (3.19)
On substituting (3.13) in (2.18) one may verify that
the only terms within (2.18) which yield secular
contributions to g2 for |x;,| < r, are those terms
linear in (g}),,. (See Appendix A for details.)
On removing secular behavior from (2.18) we
obtain as a sufficient condition for the finiteness of
gifor |xp5| < 1y

O(egh 2 —HO,
Nt iegly = 3, [0

O
X [g(I)(g2)as(t — 7) + 213)(8Das(t — 7)] d Q5.
(3.16)
On combining (3.16) and (2.17) we have
1 1
A8s 4 egly + « XEV 1 errie,
ot Oet

2 0
= 6012[g2(g})p + (g})pg?] + e 21 01'3@—1{3 !

X [g1()(ga)aslt — 7) + £13)(82aslt — )] dQs.

317
From (3.17) we obtain directly

t

[} 1 ’

(eg;)ﬁ =f e—[Ha +e(d)et)+eH g 1(t—t')
L1}

X {eﬁlz[g‘l’(g})p + (81)p87] + € Zl 0,56~ Ho"r

X [8N(EDalt’ — ) + 23NNt — 1)1} dQ, dr'.

(3.18)
On using

0 0
0,=(HY+ e = + H! .2
i3 (2+€a€t+5 2)+173 ax3

— HY— (ea% + eH;) (3.19)

and neglecting terms of relative size (In €)%, (3.18)
becomes (see Appendix B for details)

(egh)p = f te—[H=°+e(3/ast)+eHgl](t—t’)
0
2
X {Golz[gg(gi)ﬂ + (gi)ag}] + € z Ug;
i=1 Jlxgl<ro
(§=3—1)

9 _pgo . ,

« — BT [gUi)gDelt’ — 7)

0x;

+ 213)(g2aslt’ — 7] dQs} dr'. (3.20)
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From (3.12), (3.20) is not affected to order € by using
the form (3.9) for x;, almost || vy,.

IV. ASYMPTOTIC FORM FOR (g}), + «(g});
FOR |x,5] < r,

From (3.3), after some algebra (see Appendix C
for details), we can write to order e:

(82)e = I(xX13, €12 = 0, t, €1) + J(Xy3, €x,5 = O, 1, €f)

“.1)
with

¢ 0
I =f e—Hg (¢—¢)

max (¢-1/¢,0)

a_g_g 0, 1 1, 0
X {— et + 05[2:1(g1). + (81).21]

2
+3 [0aleh + g8t + 23l das} dr

t—1/€
+ f e—[H,°+cHgl+e(3/ Pet)1(t—t’)
0

2
X3, [talsh + gligt + stat a0 ar - (@2)
and

t o F)
J= — —Hy (t—t') Hl Y Ara as dt’
fmax(t—l/t.o)ee ( 2 + aet) (gZ)
4.3)

with max (f — 1/¢, 0) denoting the larger of t — 1/e
and 0, and

(g;)as(xm ) €X19 = 0, et, U, 02)

© 0, & 0 ar
Ef e Her z f Uy, e [Hs 1,8 40;:(3/02)) 1
0 i=1  Jxy'|=ro

(i=3-1)

x [g(Dglt — o) + gl(3)gl(t > )]
— g(i)edt — oo)}(x,-al | v doy doy. dr'. (4.4)

From (3.20), after some algebra, we can write (see
Appendix D for details):

. E(g;)p = K(X12, €x;5 = 0, t, €t) 4.5
with
t
K = e Het=t)
Max (¢-1/e,0)
2
X {5012[&0(8});{ + (8%)[38(1)] + € Z dQsv,,
i=1J o5} <rg

ai " [gi)(gh)us + g‘l’(3)(g§)as]} at'. (4.6)
X3

On combining (4.1) and (4.5) and specifying only
the ¢ dependence of I, J, and K, we have for (%12,
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€Xj9 = O, Et):

(82)e + €(82)s = lim I(1) +tlim V() + K]

+ {[I(t) ~ lim 1(:)1; + {[J(t) + K(1)]

[ Andis]

— lim [J(1) + K(t)]}. 4.7)
= o0
The term
lim I(¢),
t—m
which is evaluated at ex,, = 0, determines the stand-
ard Choh-Uhlenbeck triple collision integral within
an error of order e.
The term

lim [J(t) + K(¢)]
t—= oo
on the neglect of contributions of order ¢ may be

written (see Appendix E for details):
lim [J() + K(9)]

t— 0

=¢lim

B 2ad--}

. e 00, (83D + (81,800}
+ € Iln 6' G(Xlg, by, UZ’GI) (4‘8)
with

G(x12 » U1, U, €t)

2
= ¢ Ha _1_{ S J‘vxi[e—m%,a)r - 1]

o] (150
X [gH{[g2(X125 €X1a, €1, 01, )], |%10}
(ex12 = 0, |x15| = 1/e, Xy || —V15)]
+ gl{[8x(Xas, €Xa;, €t, V3, V)]s X350}
X [exs; = 0, |x3;] = 1/e, X35 || —=v;1(—)’] X doydyv,
0

- (—a—e—t + H;) {[g"é(xm, €Xq2, €1, U1, V)l [ X1l }

(ex1p=0, [x5] = 1/e, x15 | —v12)]. (4.8a)

Within (4.8) we note t, = O(1), 7 = O(1) and

Y12 = V12, (4.9a)
e—Hg"(1,2)to€,12 - e—Hgﬂ(l,z)fovle’ (4.9b)
R T (4.9¢)
Moreover, to evaluate terms of the form
Vg * (a/aexm)gg(t — 0, j, 3) (4.10)
which occur within (4.8) on using (4.4) we note
€X;3 = €X;3 — €X;, 4.11)
from which
0, .
D1+ —— gt — o0, j, 3) =’(_)jl712 . M .

a€X12 aexja

(4.12)
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Further, since we may choose

(agg/a€xaﬂ) XV = 09 (413)
we note that for an arbitrary vector a
0 . 0
m-agz=a,-~”iéi,.--—%l. (4.14)
Oex,; vl Oex,;
The term

I(t) — lim I(¢)

| Judes]

(4.15a)

for t < € — 1 may be written in the form

I(t) - lim I(t) = (g_2)as(ls €t = 09 €Xyp = 0)

B 2]
- (g~2)¢s(€t = 0& Exl2 = 0) + })3 (4'15b)
where
(g';)“(t, et, €xy5 = 0)
t 0, . 2 B0 ar
=f e‘”}fz {&—t) z j 03’3'{8—“{}?2 (4,8 )+ (8/0x)) I
¢ Uijl“ fesa’[=7¢

x [gXDgt — 7, exy; = 0)
+ 23983t — 7, ex;; = 0)]
~ g)(D)ga(t' exy; = 0)} (x5 || via) dog dvy dt’

t ° o
= f HLOP 1) doy. oy, dt (4.16)

0
and

(gé)as(€t3 €X12 = 0)
H ° o~
= f I EOG Yt s o0 day dog di’ (4.17)
and -
7 = (§)(l, €8) — (gDt = 0, €t)

— [(8Daslt, et = 0) — (&) (t — 0, et = 0)]

+ I(t, €t) — (&2)us(t, €t) — [I(t — o0, €f)

- (g;)as(t - w’ GI)] + (gé)as(et = O)

- (g;)as(t —> 00, €t = 0) (418)

with all functions in (4.18) evaluated for ex;, = 0.
Within (4.15b) we write for e1>¢> 1 (see
Appendix F for details)

(g-;)as(t’ €t = O’ €Xyp = 0) - (g%)as(€t = 09 €Xyp = 0)

1., . ,
= .; {t [(g2)as(t 3 et = 0, €Xy9 = 0)

— (FDaslet = 0, exp = O}t '= 6’1)’- (4.19)

In doing this we have neglected contributions due to
the nonzero range of the binary potential. It may be
shown that these neglected contributions as well as
the terms in y do not affect g, to lower order than
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€%, Hence they are not considered in the determination
of the €2 In ¢ behavior of g,.
For ¢ 3> €1 the term
I(t) — lim I(t)

=

from (4.2) may be estimated to be

:—ti)z +0 f, .;-f"w”t'—ds’”(”fﬁ'z)_l ar. (4.20)
For v;, > 1, this becomes
O¢ ~evyat -1 -2
= (:-t-jz + Oce "2 [(evypt)™" + (evyot) ™). (4.21)
For v;3 > }, this becomes
=25 | Oceei2 (4.22)

(e

The term
(b + K1 - tim ) + KO}

within (4.7) does not contribute to g, in order lower
than €2 This is discussed later.

V. DETERMINATION OF g; TO ORDER
LOWER THAN ¢

We now study the effect of our analysis on g, . From
(2.13) we have

L]
981 _ im [ 6,581, ef) dQy
aet £+ 00

(5.1

and

1
a(gtl)a =f912[8g(‘» ef) — t]im g, et)] dQ,. (5.2)

On substituting (4.7) in (2.14), from the logarithmic
finiteness of (g1); we obtain

1
lim é(_g_l}(_l = lim Glzl(xle, €x12 = 0, Et, t, vl, vz)dgz.
{0 € f—+o
(5.3)

On noting that the contribution from (4.19) is of
the form

A(xyg, vy, )S(e™ — )]t (5.4)

[with S(x) =0, x <0; S(x) =1, x> 0] and the
right-hand side of (4.8) is of the form

e"Hzo(t_t,){Gm[gg(gi)ﬂ + (gpeil} dr’

t—1/e

elim

t—= oo

+ € un El G(xlgs Uy, Uy, Et) (5‘5)
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and combining (2.14) with (5.3) we obtain

gy, gy, 987, Ogi , (987, 0g
et - — ==+
ot te Oet o ot te aet+€(at +€aet)
__fg {A(xma Uy, 92)5(5 + < lim
t t—ra Jt—1/e

X e I~ ”{012[81(&)3 -+ (31)081]} dr
+ € {ln €] G(xy,, vy, 13, €t) + €B
+ {J(t) + K(1) —tlim [J(0 + KL

+eg‘;‘+e2g§+-~} 4,

- a%t [:(g})m(t, ef) — lim (g1),(1, et):l. (5.6)

Within (5.6) the term B is O(1) and is derived from
contributions of O(e€) to

[I(t)mlim I(z)J and  lim [J() + K(D],
| Endes]

[hadcs]
as well as earlier contributions to gl which were
deemed to be of order e.
From (5.6) we are free to define

a(gl)ﬁ f A(Xlzy Uy, Ug) -1
=l ——

, <€, (57a)

a(gl),,/at = 0, t > € 1.
Then on subtracting (5.7) from (5.6) we obtain
ey 921, 9t (981  _dg}
2 22 20 + P
ot ot o e(at e aet)
t 1] ¢
Oufelim [ 000, 1g3gDy + (eDyetl) v

+ € |ln €] G(xy5, vy, 0y, €t) + €B’
+ {J() + K@)} — lim [J(1) + K(1)]

(5.7b)

+oegl+ gl 4 - } dQ,

~-—[(g1),(t et) — lim (g1, (, sr)} (5.8)

d(et)
with B’ of order unity.4
From (5.7a) and (5.7b) for t > ¢! we can write

(gD)p = |In €¥t1im (841, €t) (5.9)
with

lim (ZDy(t, 1) = O(1).

% In this connection we note from (4.21) and (4.22) that within
{5.8) the contribution from

f dQ, [1 — lim I(n)
f—» 00

or > et is of order e(er)~2 Therefore the 1! behavior of (5. 6)
or ¢ < 1 does not persist for 7 ¢ L.
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On integrating (5.8) for a range in ¢ specified by
T <t LTy, T, — Ty = €1, 7 > ¢}, and simplifying
(5.5) with (5.7b), we have as a condition for g; to be
finite:

)
= [hm (g}),,]

“Jole

Here » = O(1).
One may use (5.7a) to get

lim (g),(t, et = 0)
1=

(]) fim (g';);; + hm (gl)ﬁg (2)]

[ 2ad)

+ G(xy. 0y, V2 et)} dQ,. (5.10)

from (g}); (r = 0, et = 0). One may then use (5.10) to
get
lim (g1),(t, et)
t—=w
from
lim (g}),(t, et = 0).
o

For t > ¢! and physical combinations of ¢ and et
(effe = 1), these two operations determine (g]);.
For t < ¢! after using (5.10) one must use (5.7a)
again.

To within one part in |In €| we obtain:

(g0)s(t, €1) = In t lim (8])4(2, €?). (5.1D
t—
On combining (5.7), (5.8), and (5.10) we have

gt | 081 . _(9g1 g\ .
ot eaet+e(at+eaet)+

=f012{(1

+ B’ + egh + g2 + - } dQ,

- Iim) V() + K]

E—oc

— —-—[(g Yalt, €t) — hm (g1, GI)}

It is possible to verify (see Appendlx G for details)
that the contribution to g, from the terms in

- w

(1 - lim) @) + K]

and
~af3e] (a1, 0  lim (gt )

is of order €2, Further we note that the contributions to
g, from the terms in eg? + €23 + - - - will be discussed
in a subsequent paper.



LOGARITHMIC DENSITY BEHAVIOR OF A BOLTZMANN GAS

VL. CONCLUSIONS

We obtain to order e?lne, € = nri, the single-
particle function solution to the BBGKY hierarchy
in the Boltzmann approximation, subject to the ini-
tial condition: g, (t =0)= 0, s > 1. A necessary part
of these results has been the introduction and ex-
tensive usage of a generalization of the Bogoliubov
streaming operator. This operator, acting on the
zero-order correlation functions determined in Ref.
1, ultimately produces a kinetic evolution equation for
the one-particle function of the general form:

0f1/0et ~ (Boltzmann function)
+ € (Choh~Uhlenbeck function)
+ ellne] G + EH. (6.1)

The function G is given by Eq. (4.8a). In thermal
equilibrium, G vanishes as it should. On the neglect
of terms of order unity, H is given by

[outgt+ e+ ra0 62
The terms in (6.2) are formally of order unity, but they
are as yet unevaluated in detail.

It is interesting to note that the ¢+~* dependence of

(1 - lim) gl(t, ef)
[ Andlcel

produces a contribution to f(l1) of order e®lne,

although the term

t— o

(1 - lim) gl(t, et)

does not enter into the kinetic equation directly. This
apparent discrepancy is resolved by noting that within
the framework of the kinetic theory the contribution
to f(1) from

(1 —lim ) gX(1, et)
t—

serves as part of the initial condition on f(1). Hence

the behavior of the single-particle function is Mar-

koffian to order ¢21lne. From Appendixes C and D

it is almost certainly non-Markoffian in order 2.
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APPENDIX A. ON THE CONTRIBUTION OF
VARIOUS TERMS IN (3.13) TO THE
SECULAR BEHAVIOR OF (2.18)

1. Justification of Neglect of the Contribution
of I in (3.13) to Eq. (2.18)

We now demonstrate for x;, almost | —r,, that the
contribution of [ to Eq. (2.18) is of order |xp,j~2. To
establish this it is necessary to examine 7/ in some
detail since 6,,[g} + - - - + g3(4, - - )g¥(i)] is in general
unbounded in terms of [g} + - - - + g3(4)gd(7)] with
increasing |xy,|.

To see this we note from Ref. 1, Eq. (4.19):

€t

V,,‘gg(x,-,-, v;, ;) A eXp {—f ‘v(et', vy, Uy) det’

€t

X U, B (g e 1) fY(et¥) fi(er®).
Since

e—112°(t—7)___ —vi,--(a/az,.;)u—r),

a simple expansion and differentiation results in
—H " (t—r) _ ~H"(t—1) ~I1,°(t—1)
Vet = (=)t —1)e TV, 4 ey,

Since V, is of order unity, this operator is of order
l— T~ xlg/vlz.
We note that for an operator 4 such that

AL = Alg] + gl(Dgs + g33)gs + g2(12)g3 + g2(14)g3]

= order of [g] + gl(i)g3 + - - + gX(14)g3] (A1)
the size of
f AL dQ, (A2)
Q~1
or
f AL doy dv, (A3)
I~1

(whichever the case may be) can be determined by
phase space considerations. (Here do, is a surface
element of Particle 4 coordinate space.) If x,, almost
|| vye OF x93 almost || ves, (A2) and (A3) are at most of
order unity since 4 does not change the order. Other-
wise (x;, almost || vy,) it is required that a particle
located in the volume around Particle 1 had an
interaction in the past with a particle located in the
volume around Particle 2 in order to yield a contri-
bution from a region of phase space. By the standard
geometric considerations the phase space for this is
of order |x;,|~2. Therefore, in this case (A2) or (A3)
is at most of order |x;5| 7%

We show that I is composed of terms which are
either directly of the form of Eqs. (A2) and (A3) or are
of the form of terms which on a fast-time, fast-space
scale are total derivatives of terms of the form of
Egs. (A2) and (A3). In either case the contribution to
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Fic. 1. Volumes of integration for (AS5) and (A6).

(gd), in (2.15) is of order |x;3/~2 for x,; not almost

| v12-
From (2.21) for x,;3 < r, in particular:

3
E 01’4[32

4+ g3(4, - )gi)]
988 . 5, .0 o
=t T AN ok
— 03028 + gi(1gs + 23(3)gs + £2(12)g2 + g3(14)g3].
(A4)
Therefore
ag4 0 0
= H —
J:U,#u,[ g T Hagit b 0%, 8

3
+ (H'; - 3u- a)(g‘;(l)gg + 203)g

+ 80282 + gl19ed | a0 (A9

The integration volumes U, and <V, in x, space are
such that: for U,, we have [xy4], |x3] < ry; for U,,
we have |xy| < 7. U is such that [xy| < ar,
a = O(1). Moreover, VU, is chosen to include U,
uniformly over the entire duration of a (1, 3) inter-
action (see Fig. 1).

We note
1 =j =f + f . (A6)
VAV, JU, Ju,
Moreover, since
Hg(J. dX4 dU4) =f Ul ‘ d0'4 dU4
U, 1
_.f vy c— dQ
Ox,
we have
0
H"f f — =0, A7
( - ) Uy o ox, (A7)
0
i) fikee o
( U, § ax4 (A%)
[Here

(),

denotes that H just acts on the limits of integration.]
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Therefore we obtain
0 0
I = HO 0 .Y 0
(8t + )J:ll'lg‘l + Uy - Ox, 8
+ (2+Hg)f g°+f v -——a—-g°+H°
F) et S, T ax, 3
[, 208 + 22008 + 2128t + 21t a2,
—f‘u 6x

0 0
,[U( x+2ax+33x3)
X [gx(l)ga -+ 82(14)gg] dQ,

+ HY f‘u [g2(1)gh + - - - + g14)g%] dQ,
2

(gDl + - - - + gX(14)g3]1 dQ,

- f b 2[00l + -+ + gll14)gl] A
U, 0,

d d d
(= al+ St )
X [gi(1)gg + - - - + g2(14)g31 dQ, .

Since 0/d¢ does not change the order of

(A9)

[81(1)83 + 8(1,(3)g3 + 82(12)32 + g2(14)82]

terms of the form

d
Y [gADgd + -+ - + g2(14)gl]

may be added to (A9) without affecting the order of
the contribution from (A9). We thus see that the only
possibly troublesome terms in (A9) are

d 0 d
f‘l)'1+.[uz(vl o0x, t o 0x, t o ax,,)

x [g1(1g3 + g1(3)85 + g3(12)g3 + £3(14)g3] dQy

(=ly, + lvy,), (A10)

since all other terms are of the form of Eqs. (A2) and

(A3) or are total derivatives of the form of Eqs. (A2)
and (A3).

In the following discussion we neglect contributions
involving 0/0t since this operator does not affect the
order of the terms following it. Moreover, we observe:

(1) Inj,

(2) In ‘1)‘2 H]

034 = 0, 014, 034 # 0.
614 = 03, = 0, 6 # 0.
Also |x5] is such that 0,, = 0, 0,3 = 0.
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We consider

IV =J:U [81(1)(02 ) ”a_ + v3-
1 0x,

+ g‘:(3)(u1 2 ——a—) o1, 2,4)

0x, 0x,

2\ o
2,3,4
o 3)g3< )

0
+ gg(ls 2)U3 A gg(39 4) + 82(2, 3)”1 v g2(1 4)] dQ4
Ox, 0x,

(All)
and

o, ={ EQS LA

2\
2,3,4
- axﬁ)ga« )

+ g‘;(s)(vl 2

9\ o
— 1,2,4
o, + vp axz) g5( )

0 7
+ 831,205 -2 9%3,4) + 842, 3)vr - > g1, 4)] dQ,
0x3 0x,

(A12)

On adding and subtracting v, - 0/0x, in all terms
in (A1l) and (A12) we see that only terms in gJ are
possibly not of the form of Egs. (A2) and (A3). A
sample one of the gJ terms is

0 a
I, = .Y
1 (Uz ax2+03 %

defined for Particle 4 in the region “U;. On using
(2.19), (A13) becomes

0
( T+ a+v4‘i)

+ 15 aa )g‘;(z, 3,4) (A13)
4

0x, ) 0x,
x (€7 (gl + g283(2, 4) + £%%(2, 3)]
- 8182(2 4) — 8182(2 3)} (A14)

Since only 65, # 0,

0 0 ]
I, = R, s
! (1;2 3x2+v3 Ox 3+ ¢ ax4)

X (e ~H’ egs + 21822, 4) + gigd(2, 3]
= (U '*a_‘l'vza 3 T + Uy '_a“)

? Oxs 053 045
x (¢ [gd + g22%2, 4) + g2gl(2, 3)l-

There is no contribution from v, - 9/0x,. The contri-
bution from v,5 * 3/0x,, can be evaluated as a surface
integral and is therefore either the order of unity or
1/|x,0/2. If there is only one interaction in (2, 3, 4)
space prior to the (3, 4) interaction, vy, + 9/0x,; does
not change the order of the function to the right of it.
If there is more than one interaction prior to the (2, 4)
interaction then the term

Vgg * (a/ axza)e—Hs"rgg
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may be of the order |x,,|. Since the corresponding
phase space volume is of order 1/|x;,|* compared to
the volume with only one interaction prior to the
(3,4) interaction, the contribution from multiple
interactions in the past may be neglected. The phase
space from single interactions in the past is of order
1/|%,5|% Since

f A€y ° 2 eH S 4

0,3
=0 f (eH gl 4 - - + glgd(2, 3)] A}

we conclude the contribution from v+ 0/0x,, to
Lyy, - is of order 1/|x,,|*. The remaining contributions
in g7 within Iy, . and Ly, can be treated in the same
manner with similar conclusions. The treatment of
(A4) for x,5 < ry is the same,

83222, 3)]

2. Proof That the Contribution from
e Ha'(gl) (¢ — 7, f) in (3.13) to (2.18)
Is Nonsecular
By previous discussion within this section and in
Ref. 1 the contribution of the term linear in 0 to Eq.
(2.18) is of order 1/|x;,)? for x;, almost || —v;,. We
now seek to show that the contribution from

e H (gl (t — 7, 1)

to Eq. (2.18) is also of order 1/[x;,|? for x,, almost
| —v;2. Our procedure is to evaluate {gi[t — =,
e(t — 7)]}, subject to the initial condition:

[gi(t = 0, et = 0)], = 0.

The contribution from (g}),(t — 7, €t) — (g}).[t — =,
e(t — 7)] is of higher order.

For regions of three-particle phase space with
streaming motion such that there are interactions for
0 < t' < t — 7 one has, since there are no secularities
in f1 and hence in (g}),, that (g3), is at most of order
unity.

For x;, almost | —v,, the corresponding contri-
bution to (2.18) is of order 1/|x;,|%. For a greater
number of preceding interactions the contribution
decreases at least as rapidly with increasing [x,,|.

Similarly the contribution to (2.18) for x;, almost
| —v, from regions of phase space with |x;| < ro,
[x;al < 1o, 1%;1 > 1 is of order [xp,|72.

For the remaining trajectories one has for |x;,| < r,

(1) = e H[g3(t — ) + g)i)gld) + £3@)gd)
+ g3, gz + £33, k)gll
— [g3()gi(4) + g3l + g2, j)gs + 23, kgl
(A15)
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and i =2: g%4)g¥1,2,3) 1
=2 b4 g 3 &y o a2 9
00 = —HS + HY + v, ai : (A16) e 0 |%10]* |19]2
Xa
Then (2.20) may be written 1
Y 21,2833, 4) ————— ;
i 0 ] y 6 |x1al” [ %ol
(5 +H eom eHé) (b,
€ , 1 1
5 5 =3 d@We,23) —
—_ {[(_ + H) 4+ e— + eHé) —~ (eH} X3l Xy0lZ  fxasl® x10|2
ot Oet
9\ 3 3 9 Here and below %,, = e~ #3°¢=") |x,,|. The — subscript
+ €£):| . IJ; | + 2 o Uy * 37} denotes evaluation at 7. <t — 7. 0 is the angle
i= @l <rg  i=1J]zyl<ry 4
o ' between x,;, and vy,.
—Ha 1,0 O : o 12 12
X €5 gyt — ) 4o+ goli, K)gal dy. (A1) The correlations which are not favored are
On using the initial conditions on (g3), and g%s > 1) 1 1
we obtain to order €: i=1: g%gk2,3,49

+
L |x13|2 |x12|3 |x12'2 |x13|2_
(83)a[t — 7, e(t — 7)]

1
3 0 0,
_mO: g(1,3)g5(2,4) ————;
B E1J.I ! et {g8lt — 27, «(t — 7)] R |X1al? |%10]?
1= Zial=7g
+ gDgs@) + - - -} dQ, P=2: gi2)gi1,3,4) 21 : 21 2
'+ft_re—(Ha°+cHal+€[3/3“‘)1)”—7”") [x1l® [X3al 2 [xgsl® [ X1l
: _— 829l 4) ——
X 2f vy — {e gt — ) + - -1} dQ, dt X12]™ 13033
i=1J|xza| <7o ax4 1 1
ot ey | @ =3 381,24 +
_fe (E+eH +eD3/3(et) e—r—t') i Hé) 81(3)g5( ) el o T e ol
o o(e?)
3 1
x 3 f H Nt — 1) + - - 1dQ, dt'. (Al8) g(1,3)g32,4) ———;
=1 J @] <ro |%13]" |Xysl
We first consider (gl), for e Ha"(t=" [x | of order 09 3)o%1. 4 1
unity such that for some ¢’ with ¢ — = > ¢’ > 0, &2 Dexl. ) e
—H (t—r~t")
arg 2 e~ x| 2 7 (A19)  The dominant contribution from (A20) is of order

with o« of order unity. The considerations for [x;,|™2 [x:5|7202, but on integrating over 0 for the
e Hs’t=7) | x| of order unity are the same if one re- contribution to (2.18) there is a sin 6 weighting factor
places |x,5| by[x,5/1n(A19). Also, theconsiderationsare  which makes the contribution of order |x;,|72|x.5]™2
unchanged if e=H3s"("") |x,,| (in place of e=H:"¢=? |x .|} Integrated contributions of this order also occur from

is of order unity. other terms above.
For the term in (A18) of the form The estimate of the dominant term in the above
. comes from considering that the change in v, per-
fl < e Her (A20) pendicular to x;, for e~Hs""gd(1, 2) to be nonzero is of
Tigi <To

order |x;,| 7 for 1 and 2 almost intersecting in the past,
we restrict our considerations to four-body trajec- and that for d¢/0x of order unity the corresponding
tories with two interactions in the past. This implies volume in real space is of order |x,,|~26~%. The other
g¢ can be ignored. The correlations (with the order of possibly favored terms are estimated in a similar
their contributions) which are “possibly favored” manner.
since they involve a (1, 2) interaction in the past are Next, within (A18) we consider the terms in

1 1
i=1: gi(4)gy1,2,3) + ]
' ? [x13]% X102~ O [%30]® [x15]% J;z“q Uy 5;4 . (A21)
1 i 0

PYSTTTE - H S0
6 |X12)? 1% As before, we neglect contributions from e~Ha7gd,

g2(1,2)g3(3, 4)
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The orders of the correlation contributions as func-
tions of ¢’ (with variables evaluated at ') are

1 1
i=1: g3(1)23(3,4,2)
|x13|2 |x23|2_ I"lzl2 |x23|3_
@Y1, 2,3) —— 2
[x1al” xaglZ  [Xqaf® |XaalZ_
1
g2(1,2)g83,4) ——
: ? |x12|2 lx13|2
&1, Dgh2 4 ——.
|X12]” |13l

For i = 2, the contributions are the same in form on
interchange of 1 and 2 and similarly for i = 3. Here
the — ~ subscript denotes evaluation at r__ < ¢'.

The contribution from the terms immediately above
to [g3(xya, * - *)], is seen to be of order |x;,|~2. Thus
from the evaluations of (A20) and (A21) we find that
the contribution of e“Ha')’(g;)a to (2.18) is of order
12

Further, we note that on combining features of the
two preceding estimates, one obtains that the contri-
bution to (2.18) from the term in (eH} + €0/0et)
within (A18) is of order e |x,| 2.

3. Consideration of Remaining Terms in (3.13)

The contribution from the terms in (3.13) linear in
g% is of order [x;,| 7%

For the terms linear in (g}),,, [as given by (3.10)]
we note that the first term on the right-hand side of
(3.10) can be written as

2
. [H +eHy +e(3/3e0) 1(t—7)
[t—e 12

i=1 J |zl <ro

g2 dQ,. (A22)
On noting that

2

2 83 d€2s

i=1J |z} <ro

decreases with increasing |x,5| as {x;,|™2 due to phase
space considerations since

2
e—[Hg°+eH2l+e( 9/2€t) )(¢—1) Z

i=1 Jlaial <ro

gg dQ,

vanishes if there are no correlations at t = 0, e = 0,
we estimate that the contribution of (A22) to (2.18)
through (3.13) is of order |x;5|™2.

The second group of terms on the right-hand side
of (3.10) is linear in g with arguments corresponding
to particle locations prior to the (i, 3') interaction.
From phase space consideration this contribution,

1421
which involves two interactions prior to the (i, 3)

interaction, is of order |X;, — v;5(¢ — t')|~%. Therefore
for these terms we have an estimate:

f” sin 6 d6
0=1/1210) |0y

J‘lvlelt ds
X .
0 [(s = |x42| cOs 0)* + |X1o|® sin® 0}

(A23)

This expression is

0 v dé =0 1
34in2 6 = 2 :
0=1/|z12| [X12]” $iD° 0 |y, |%10)* 012l

Since the operators H} and 0/det acting on g? are
nonsingular, one may verify that the contribution
from the third group of terms in (3.10) is at most of
order e.

For the terms linear in (g3),, we assume for con-
venience that the velocity of particle i is isotropically
distributed with respect to the velocity of particle j as
a result of the /, 3 interaction in (2.18). Then, on
performing first the integration in (3.9) over ¢’ and
next an integration over velocity directions, on letting
7=1t— 1t we obtain as an estimate of the contri-
bution to the integral term of (2.18) from the terms

comprising (g3),,:

T t
f sinfdo| |xip — v7| i dr
[

=1/{z1g| =0

O=m w
mf sin9do| |x;p — v 2 dr
6=1/|x12|

=0
O=7
= f sin
6=1/|z12|

This expression is approximately 7#2(2 |x;,| |v;0])~* and
hence is O(]xy,|™) on taking v7; to be of order unity.
Hence the terms linear in (g3),, lead to secular behavior
in (2.18).

040 ds
[v12) Js=1(s — |x30| cOs 6 + |x5.l? sin?6)
(A24)

APPENDIX B. ON THE CONNECTION
BETWEEN (3.20) AND (3.18)

One notes that (3.20) is obtained from (3.18) in the
following manner:
To within order e in place of (3.18) we have

2 0
__HO - — Ho
€‘i§.J‘IE,‘3I<70( 3 + v3 aX3 + 2)

X e [gdi) (gt — 7) + + +1dQs, (BI)
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which is the same as

: 0
gg J;z {<r et ’[g‘}(i)(g;)“(t' —7) 4 ]1dQ,

d

+e Oet

(s
2

+ N
2

R. GOLDMAN AND E. FRIEMAN

: [}
) Zﬁ al < e s r[gtl’(i)(gé)as(tl — 7-) + - .] ng

7}
€y f gy =
3 Jizgt<r,  0Xg

(e H i) (ghast” — 7) 4 + + -1} 4y

m ZJI | e~ HYgXi)(gDa(t’ — 7) + -+ 140,
= i3l <70
0\ 3 0
() 3 [ D =+ - 1d0s. (B
i= Zig] <7o
The next to last line of (B2) to order €/[x;,|* can be written
2 0
3 fl T B0 =)+ . (B3)
i= 3] <o
The contribution to (gl), corresponding to (3.18) is
82)p P g
¢ 0 ’
ﬁ o U ety +apen (-t (aa, + H3 + eH; + ea—z-) > | e gl gt — ) + -+ 1dQq dr’
t ° , 2
+f e—[Hz e H o e(d/0et) Jt—t )(—€2)(H; + ait) z e—Hgor[gql)(i)(g;)as(tr — ,r) + - ] dQs dr
0 € i=1
t ° , 2
+ e[ eumtramtinancns [ o T TGN — ) + 1) d dr. (B)
0 i=1 J |2l <ro ax3

The first time integral of (B4) is the integral of a
total derivative and is therefore seen to be O(¢). The
second time integral is of order €*In e. On neglecting
terms of order e only the third integral of (B4)
remains.

APPENDIX C. ASYMPTOTIC FORM FOR
(Da: xe] <1
We have

¢ 0
(gD. =f ¢ TH beH a0t ’{ 12[g3(gD)e + (g1).8%]
0
og’
- a(ftz) + 2f es(ga + gigs + 2g1) aQ }
(&)
We note
t max (¢—1/e,0) t—r t
f = f + f + f . ©
0 0 max ({—1/¢,0) t—7

0
—e

or

[Hg +eH2 +€(9/€t)]t’ z

i—r1
fmax(t—l/e 0)

—[H, +eH gy +s(8/aet)]t[

2
+ e[H2°+cHzl+c(3/3d)]t' z

i=1J ]2l <ro

Ug;

. . 0. -
In i, we can substitute e [Ha"+e(H, +e@2etll=t) for
e H2"t=t) to order e.

For
—[H O+ e H o +e(3/3et) J(t—1")

{7
f ¢
max(¢—1/e,0)

X 2 0.2(23 + glgs + g2g)) dQ; dr’ (C3)
we note
g3 + gigs + g8l = ¢l (g3 + glg? + g2g)) (C4)
and
Oet
0 0
vy — — [eH} —1]. (C5
o ax3 (E 2+€aet) ©
Therefore (C3) may be written
_Ha r(ga + 8182 281) dQ,

lwizl <ro

 _po
= e H (S + o088 + glgd) dQ

= } dt' + eh. (C6)

Here A is of order unity as are 4’ and 4" in the equations which follows.
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On expanding the operator e~[Hy"t¢Hy'+e(%/3%ltt=t) for the term in vy, in (C6) we have for (C6):

t—r
fmax(t—l/e,o)
t—r
+J\
max (¢—1/e,0)

—1

This may be rewritten as

t—1
f —HZ =) Z 0;3(83 + gig% + g2g)) dQ, dt
max (t—1/¢,0)

+ t —Hg(t—t)z( )(eH1+€ )(t 'y

max(t—l/e 0) n=1 n!

xz v3,

i=1 Xg

e H7 (g9 4 g%80 + 3¢ dQ, dt’ + eh”.

(C8)
The terms in 0,3 combine with the contributions
from [¢_ and X1/ to give the term I(t).

o, 0
et —[ etV Zf (g + 2298 + gag)dﬂ]

= H ()
& —y
+f 2 z 031
max (¢—1/e, 0)

3 ~Hs’ (g3 + gigs + g2gd) an]
X3

¢ Hi (t—t)zl(n') (GHI +e )(t
2 0
x[3 Jou s e a8 + gled + e dﬂa] dr' + . n
3
Since
i f vs’i{e—-[Hzo(i,:i’)-i-v,«'(a/azj)]r
i=1 ®:3"[=70
=
x [gi(Dga(t — o) + g¥(3")g5(t — )]
- g1(l)gg(t_’ ©)(X;3 || vi3)} dog: dvy,
_ C(€x12’2€t) " 0( 1 3) (C10)
| X1l [ 12l
to within order ¢, (C9) becomes
t
| e O (H 4 ) @, (C1)
max (¢—1/¢,0) Oet

The contributions within (C8) from the summation
3=, which are linear in e~#s"g? are of order ¢ from
phase space considerations.

For the contribution from the n =1 term from
terms linear in e Hs"g? we replace g3(t' — 7) and g(t)
by g3t — o). To find the corresponding error we note
that independently of ¢’ the phase space for inter-
actions prior to t = 0 is of order (v;,)~2~2. [Here and
in succeeding appendixes we indicate the v,, depend-
ence of the contributions for vy, < v,,. Since this
dependence is always of the form (v5)%, > —2,
there are no resulting singularities in the single-
particle distribution function.] The corresponding
contribution to (g}), is

t—r
O(vy) " f e(t — r)r2dr
‘ max (i—1/¢,0)
{0[6(012)_2], t<et
Ofefe(vt]®}, > e

The remaining part of the n = 1 contribution to
(2. is

t—r ° a
_f E(t . tl)e—Ha (t—t") H; + =
max {t—1/¢,0) Oet

0. o . )
X 2 J‘ Dy {e U B30 (10T
i=1 |@ia’l=r0

x [gl(Dga(t — ) + gi(3")g3(t — )]

— g3(i)ga(t = o) (x|l via )} dog dvg. dt’. (C9)

The contribution from each term linear in e Hs"7g?
in 3 , of (C8) may be verified to be of order e(v,,)—2
for t < €' and of order e(ev,,t)~2 for ¢ 3 €1, Since
(eH} + €0/0et) is of order unity the sum converges in
either case and its order is unchanged.

APPENDIX D. ASYMPTOTIC FORM FOR e(gé)ﬁ
From (3.20) and (3.9) we obtain

t

0 1 '

(Eg;)p =f e—[Hg +eH o +e(9/0et)}(t—1")
0

X {5612[81(81)11 + (8})381] +e€ Z Ug;* _3_

=1 |a3]| <rp ax3

t'—r
x e—H&[ 2%3) f e—[H2°+eHg +€(2/3et) 1t'—r—1")
0
2 0
X 2 f vs'-[e—[Hz (4,3 )+v;-(8/0x;) 1
1
|2:3°| =0

i=1
(i=3—1)

x [g1(Dg2(j, 3, t" — 7) + gl(3)gd(t" — 7)]
— gU(D)gd(t")] doy dv, dt") +B—>ii— 3]} dt

(D1)
We first note that within (D1)

t t t—1/e
b=l
(1} t—1/¢ 0

Due to the exponential damping of the gg terms the

(D2)
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contribution from [%%/¢ to (eg}), is of order
T2 —cl jvis] Sin @
f J. —————— sin 6 d6.
1/e =0 t |05} sin 6
On using the form for ef 3> 1, this is of order

© 1
[
1/e |012| t

which is of order €/|v;,|% Since the velocity is three
dimensional, this term only contributes to g, inorder €
Also within (D1) we have

V- t—1/e t'—r
f dt” =f dt" + dt”.
0 0 i—1/¢

The contribution involving the combination

t t—1/¢
f dr f dr’
—1/¢ 0

within (D1) is of order

i—1/e dat’
f —1/e f a1’

Here d(t") denotes the separation between the two
particles in g2 at time ¢”; therefore, by phase space
considerations, d-%(¢") orders the size of the integrand
as a function of t”. Since d=*(¢") is nonsingular in
three-dimensional space, and since Particles 1 and 2
are together at time ¢, d2(t") is of order

{[ora(t — 0P + 03,08 — "}
Hence (D4) is of order €/(v;5).
For |x;5| < ry we have
e—[112°+e112‘+e(a/aet)](t—z')

(D3)

(D4)

— I3 (1—1") o LTl +e(3/2e))(t—1)

=e
(D35)
and
e L +eHy +e(2/3ct)]('—r—1")
= o H2"(W—r—1") —[eHy +e(d/2et))(t'—7—1") (D6)
with an error of order . On inserting (D5) and (D6)
in (D1) and expanding the exponential operators
involving (eH; + 0/det) we obtain, on keeping the
leading correction terms,

t 0 ,
(eg2)s =ft_1/ e Ha (i ’{6012[g‘1’(g})p + (g})ﬂgi’]

+ e z Vg — e—H;; r[( 0(3) e—Hz (t'—r—1")
ax:; t—1/e
2
X 2 f vali{e—[Hzo(l,:; Vv (3/0x;) 1r
i=1 Jla;'|=r

(§=3—1)
x [gi(Dge(t” — 7) + £i(3)ga(t” — )] — gi(Dge(t")}

X dXg;) dvg. dt” ) + (3 —i,i— 3)]} dt
2 " "
+0 f f e —1)ydr"dr _
t-1/e J t-1/e a1
The error term of (D7) is O€¥(In €)v;].

lzisl <rp

(D7)

R. GOLDMAN AND E. FRIEMAN

By repeating the argument for (D4) to within O(e)
we can extend the integration range over ¢” in (D7)
from 0 to r— 1/e. Furthermore, since g3(¢+") and
g5t” — ) vanish for " < 0 we may write the lower
limit of ¢’ integration as the maximum of ¢ — 1/e and
0.

Therefore on neglecting the difference between
t” — 7 and t” within (D7) we write for the contribu-
tions linear in g3

ga()]

t t'—
ef dt’
max (t—1/¢,0) 0
(D8)

with the operator £ a linear operator of order unity.
For a given¢” and ¢’ the contribution in g3(t") — g3(0)
is of the order ¢ multiplied by the phase space for
interactions prior to time t” = 0. The phase space is
estimated by the expression e(v;,¢t)~2. Hence we have

¢ t'—r
c f dr f dre[glt”) — gY(w)]
max(i—1/¢,0) 0
= 0[‘(”12)_2]- (D9)

The phase space for interactions earlier than
(t + t") before ¢ is similarly of order [(v;p)(t + t")] 2.
Hence we have

£ 0
. f dr f dt"2g3(o0)
max (¢—1/¢,0) —o0
dt//

t ©
= ef dt,J- P ———
max (+-1/6,00  Jo [v(t + 17)]

which is also of order e(vy5)2
On combining (D8) to (D10) in (D7), (4.6) is
obtained.

dr'L[gy() + g3(t") —

(D10)

APPENDIX E. ON THE DERIVATION OF
THE ASYMPTOTIC FORM OF lim [J() + K()]
t—» 0O

First we note that e H a“’[(xi3)|| = oo] denotes that i
and 3 are projected backwards in time through an
interaction, and that e=#s"[(x,3), = — o] denotes that
i and 3 are projected backwards in time prior to an
interaction. Within (4.6) we take e~ Hs ’[(x,a)” = 0] =
et B[(x;3) = 0] and e Hy Mxig)y = —o0l =1,
and we assume

{£:20J, IMxiz)y = ol}, = {20/, 3)[(";'3)“ = —o]},.
These assumptions introduce errors within the
integrand of order e~H#2""#)|x,|-2, which result in
errors in

lim [J(¢) + K(5)]

t— o0
of order e. Hence they are valid for obtaining the
In ¢ behavior of

lim [J(2) + K(?)].
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YA %
3%

A [x)\8

g L]
v, (1-1)

FiG. 2. Geometric picture for integrals within (E4).

We now seek to simplify,

€J~t e__H’O(t—t’)l:z2 U3i[e_H’o(i'3)r _ 1]
max (¢—1/¢,0) i=1
X {32(3)[52(1,])]“ + g?[g2(3,j)]as}

- (i + H;) [gz(f,j)l,s] dt' dog do.

Oet (E1)

We note
¢ Hy"(¢—1) d

[82(%is5 V55 03)]us =f eIy f Uss
—o i=1 |zl <70

x {[e B 697 — 1]g96%(j, 3)
0,.
+ ¢ He 637500 )} doy dvg dt”  (E2)
and

[gé(ﬂxi; s Vs )]s
I L2
=f ¢ HY =t 'y f via{ } dos dvg dt”.
—® i=1/|@;| <7y

For specificity we may let |fx;;| = 1/e. From (E2) and
(E3):

[g‘g(xija vi’ vj)]as = [gz(ﬂxu ’ vi ’ v:})]as
t 2
f cHLE=) S f vp{ } doy dog dt”
—o0 i=1J |23 <ro

t . 2
f —H =) s fl < vs{ } dogdvg dt”. (E4)
- Zigl<To

(E3)

X

i=1

If
(" — 1)y =p@" — 1), (ES)

then ABCD and A’B’'C’'D’ in Fig. 2 are geometrically
similar and similarly oriented. Moreover, for Fig. 3
at a given impact parameter with respect to C or C’
the velocities of particles of the same speed traveling

FiG. 3. Detail for the parallelness of velocities with the same
impact parameter with respect to C or C’ of Fig. 2.
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from i backwards to j differ in direction at most by
an angle of order ry/|x,;|. Since this difference produces
a variation in [§1(x,y)L., of order (1/lxyDIZ}(x) it
provides a contribution of order € to

lim [J(1) + K(¥)]

t—= o0
which may be neglected.
Since (B'C’) = B(BC) (again with the neglect of
corrections of the order of 1/|x,| relative to the
dominant contribution):

[phase space covered by do, dvg in (E2)]

= 2_
[phase space covered by doj dv, in (E3)] b
(E6)
Furthermore, from (E5) we have
dt” = g dt’. (E7)

On inserting (E6) and (E7) in (E4) we obtain

[gé(xﬁ s Uiy 0 = {[Ea(ﬂxﬁ, Uiy ”j)]as/|xu|}ﬁ [%440 5
(E8)
which is the same as
({[gz((xw)', ;5 0)]as l(xij)'l}/lxi:JD
(1G] = 1€, (%" | X35 (E9)

On using (4.9) and neglecting the difference in direction
between x,; and —v,;; which by reasoning analogous
to that following Fig. 2 produces a variation of order
1/|x,|? in (g3)s and hence a variation of € in

lim [J(¢) + K(1)],

i+

(E1) becomes to order ¢ [with = = O(1)]:

i~ 2
¢ f ! e—H,°(:—-t') 1 z
f=t—1/¢ [x il =

0,
fv3i(e—H2 (4,3)r __ 1)
=1
(i=8—1)

X B [ZH(Xi5) s 035 07))as 10x:) 1} (H(xs5)'|
= 1/e, (x;))' | —(¥;;))
+ g?{[gé((xa;)’, 03, 0)]ae |(x3,)’|}[|(x3,)’|
= 1/e, (X37)" | (—¥;7)] | dos du,

- (—a— + H;){[gz((xu)', 05, ) ]ae 1R THIGRsSY |

Oet
= 1/e, (x;)' | (—¥; )1 dt’. (E10)

On neglecting terms of order 1/|x,;|~2in (E10) we have

eEfen L 1
lx;l ol (8 = 1)



1426

APPENDIX F. ON THE EVALUATION OF (5.15)

We now seek to evaluate for |x,| < 74:

A(I) = [g-g(t, €t = .O’ €X12 = 0)]as
- [g;(Et = 0’ €X1g = O)]as' (Fl)
The remaining part of
(1 - lim) 0
i+

depends on source terms which are either of order
e or are more sharply localized in space around
Ix12l < ro than the source terms for A(f), and hence
should decrease more rapidly with increasing ¢. With
O defined in (4.16) we have

0 M .~
A = — j TG o) dt” day dvy

t ° o~
+L"“”F “=I0[g3(1") — gY(0)] doy dvy dt”,  (F2)

0 -
A) = — f e HS =008 o0) dt” doy, dvy
-

1 ~
+ f e—-Hzoft’——t’")O[gg(t”’) — g)(o0) dt” doy. dvs, .
0

(F3)
From Egs. (F2) and (F3) we have

0 ~
A() = A(t')[—J 10 0% 0) day. dvg, dt”
o
+ [ 183y - g3t do duy ar|
0 0
X [—J; e =10 6% 0) doy. dvg. dt”

t ~

-1
— g(w0)] doy dvy dt”’} . (F4)
On writing

" !

t" =t'a, (F5)

(F6)

t" = ta,

and following the arguments within Appendix E we
obtain in analogy to (E6):

[phase space covered by do; dvg in numerator
of (F4) at ta]
[phase space covered by doy dv, in denominator
of (F4) at t'«]
t—2

@

(F7)

R. GOLDMAN AND E. FRIEMAN

Moreover [in analogy to (E7)] we have from (F5) and
(F6):
at” =1t da, -

dt” = tda.
On combining (F7) to (F9) we have
{[g.‘al’(t’ €t = Oa Exlz = 0)]43

- [g—;(t - (1), €t = 0’ €x12 = 0)]018}
= A(t, et = 0, x5 = 0)

(F8)
(F9)

= 1: [FA(t, et =0, ex,y = 0)](:’ - %) (F10)

Since all events contributing to (F4) through the
terms in g occur prior to ¢ = 0 or ¢’ = 0 (as the case
may be), the distance between the (4, 3") interaction
and the earlier interaction involving j is either of
order 0 or t'¢ for |v,,| of order 8. Consequently in
(F10) the errors due to the nonzero range of the
binary potential are of order

1811 4 ()], (F11)

The contribution of (Fil) to g, relative to the
contribution of (F10) to g, is of order one part in

Ine.
APPENDIX G. CONTRIBUTION OF

(1 — lim )[J(t) + k(0] TO g,

From Appendix E and Eqgs. (5.7) we have for ¢ < ¢!

(1 - lim) U@ + K@)

f2nded)

~ 5(1 —tlirg) e [g1)(gh)y + 222)(gD)y)

+ ¢In etB(xy5, vy, Uy, €t) + €G” (G1)

with G” of order unity. On neglecting the terms in
€G” which may be incorporated with the term G’ of
Eq. (5.8), Eq. (G1) is found to be of the form

(1 - lim) () + K] = € In (NClXsq, 0y, 03, €f)

(G2)
with C of order (v;5).

Thus on integrating (5.8) for a range in ¢ specified
by 0 < ¢ < €71, the contribution to g3 is seen to be
of order unity.

From (5.2) the contribution from

(1 - lim)alaet(g})a
t— o0

is of order €2
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Onsager’s results for the partition and correlation functions for the Ising model on a two-dimensional
rectangular lattice are rederived using a Green’s function technique. The definition of the Green’s func-
tion is based on a recently published casting of the Ising model into a many-body fermion problem. The
relation between this approach and other methods used for solving the Ising problem are indicated.

1. INTRODUCTION

ECENTLY the two-dimensional Ising model has
been solved using descriptions which have been
similar to the theory of many-fermion problems.
Schultz, Mattis, and Lieb,! starting from the algebraic
expression of Onsager,? have given a proof which is
very similar to, and uses the techniques of, the theory
of noninteracting fermions. In a previous paper® a
proof was given in which the partition function was
expressed as a vacuum-to-vacuum expectation value
of an expression which is analogous to e~*#* in many
fermion theory. However, there the starting point was
the combinatorial expression of Kac and Ward.t It
is interesting that the algebraic and the combinatorial
methods should both be able to be expressed as
problems in many fermion-theory, or quantum
statistical mechanics.

Both these reformulations of the Ising problem
are important, because one would now hope to be
able to use the techniques of the quantum theory of
many particles to obtain approximations to the
unsolved Ising problems. One of the most powerful
techniques in this field is the method of Green’s
functions. Many people® have used Green’s function
techniques to obtain approximations to the Ising
model but generally their methods have not yielded
good results. This may be because their approaches do
not even give Onsager’s exact result when applied to
the soluble Ising lattices. In this paper we show that,
starting with the approach of I, we can define and
evaluate Green's functions, which give the exact
results for the partition and correlation functions for
the soluble cases. It is hoped in later work to use this
formalism to obtain perturbation expansions about
the exact solutions obtained here for the unsolved

1T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
36, 856 (1964). ¢

2 L. Onsager, Phys. Rev. 65, 117 (1944).

3 C. A. Hurst, J. Math. Phys. 7, 305 (1966), hereafter referred to
as I.

4 M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).

3 See, for example, R. L. Bell, Phys. Rev. 143, 215 (1966).

problems. It is interesting to note that Kadanoff® has
also developed a Green’s function technique which
gives exact results, and that his approach is based on
the many fermion formalism of Schultz, Mattis, and
Lieb.

In I it was shown how the partition functions of the
soluble Ising lattices could be reduced to the vacuum
expectation value of an operator exp (—H), where H
is a quadratic expression of fermion creation and
annihilation operators. Hence H resembles the
Hamiltonian of a noninteracting fermion system and
the “time” is the lattice coordinate. In Sec. 2 we
generalize this method to express the correlation
functions as the vacuum expectation value of
exp (—H’), where H' can be regarded as a perturbed
Hamiltonian. This can be expanded as a series in
analogy with Dyson’s perturbation expansion in
field theory. In Sec. 3 we define and evaluate the
Green’s function which is then used in Sec. 4 to
calculate the terms of the perturbation series. The
series can be summed to give the exact result because
H' is quadratic. In Sec. 5 we use the Green’s function
to evaluate the partition function.

2. CORRELATION FUNCTION AS AN
EXPECTATION VALUE

The correlation function {ss,,,) for a pair of spins
located at the sites 1 and k + 1 is defined as

(815%41) = Z (cosh K cosh K, zlslskJr1
s=t.

N
X }:.[1(1 + x5;8,00(1 + ¥8;8,4m), (1)

where Z is the partition function, s; = +1 represents
the state of the spins at the lattice site j, £ K;kT and
+ K,kT are the interaction energies between hori-
zontal and vertical pairs of spins, respectively, and

x =tanh K, y = tanhKX,.
We only consider correlations where the (k + 1)th

¢ L. P. Kadanoff, Nuovo Cimento 44, 276 (1966).
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spin is on the same horizontal row as the first spin.
The generalization to other cases is straightforward.
Using the identity

5181 = (5152)(5283)  *

Eq. (1) can be written as

N
(S15%41) = Z7x" _Zﬂ E (A + x;5;5:: 00 + ¥5:5;4m)s
2)

(55k+1)s

where x=x1 if j<k
if j>k
and Z, = Z(cosh K,)¥ (cosh K,)~~.

Apart from the j dependence of x;, Eq. (2) is
identical with the expression for the partition function.
Thus, using the same technique that was used in I
to express the partition function in an S-matrix form,
we obtain a similar S-matrix expression. It has been
shown’ that an expression such as in Eq. (2) can
alternatively be written in terms of fermion creation
and annihilation operators, a*, a{®*, a{V, a{». We
have

=X

(1) + x a(l)*a(fl_)

x* (0] I'I (1+ a®,a

2*1 n* (2 2)% (2
+ya() ;_}1+xa() ()+ya() g_)

(2)* (1)* (2)* (1)* (2) (1)
+ x;ya; + x;ya; " a; a2 ,a,7) 10)

($18pe1) = Zl

*
= Z7x* (0| H exp (a'2,.aM + x;a* a0,
=1
@% () W*_(2)
+ ya; af,_l + x;a; a;_p,

+ yam* (2) .+ x,ya‘z’* (1)*) |0> (3)

The product in Eq. (3) is to be taken in order of
increasing j from right to left. If we define an ordering
operator T which puts the products in this order we
can combine the exponentials to give

! L 3
(51501) = Zi* (0] Texp (za;i’ a®; + x,a®*a®,

*
¥+ x;af

(2)* (2)

W*,(2)
+ yaj a;’m

(2)* (1)*

+ ya; m T X;ya; [0). (4)

Now, defining the operators
AV =aly, A =a?,,
AP() = xa’*, A'(j) = yaP*,
the exponent in Eq. (4) can be written as

4

N
>3 lskqu"(j)Af'(j)
+3 3 W, A”o)A"(J)(— - ) )

j=1p,¢=1

7H. S. Green and C. A. Hurst, Order—Disorder Phenomena
(Interscience Publishers, Inc., New York, 1964).
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where the (4 X 4) matrices k and k' are defined as

0 -1 —1 -1
1 0 —1 -1

k = ,
1 1 0 -1

1 1 1 0

0 0 -1 0

0 0 -1 0
K=

1 1 0 -1

0 o0 1 0

The first summation of Eq. (5) is just the term
obtained in I for the partition function. The second
summation can be regarded as the perturbation which
takes care of the j dependence of x;.

Defining

S = exp (3 3 Mok (D4°G)
j=1p,¢=1
as the unperturbed S matrix we have

(150s) = Zi%* 0] Texp [z S o AX()AT)

a : (xiz - 1)}5(1\/) 10).

If we expand the exponential we obtain the series
($18k+1)

= Z71x* (0| T[l +2 [Z Z Y, AP(NA())

n=1 n j=1p,0=1
x (xiz -~ 1)} }S(N) 0. (6)

3. EVALUATION OF THE GREEN’S
FUNCTION
In order to sum the perturbation series in Eq. (6)

we first have to evaluate the Green’s function defined
by

G"(u, v) = (0] TA'(w)A'(v)S(N) [0)/(0] TS(N) |0)
= Z;" (0| TA’(u)At(v)

0 N
xE-l—[z s %kmAﬂmA‘"’o)] 10).

n=0 n! i=1p,q=1
@)

The vacuum-to-vacuum expectation value of a product
of creation and annihilation operators is evaluated by
means of Wick’s theorem. This means summing over
time contractions between all possible pairs of oper-
ators which appear in the product. The time con-
traction of two operators A?(j) and A%k) is written
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2

A (j,.v)

AR (4 )

A

u

AP, i AP )p)

Fi1G. 1. Examples of graphs corresponding to contractions.

as A?(j, k) and defined by
T(A™(j)A%k)) = N(A*(j)A*(K)) + A*(j, k).

Calculating all the time contractions, we can express
the results in the following way.

0 0 X0, 15 O
’ —x6’-+llk 0 0 0
0 —¥8iim 0 0
0 0 xo " 0
e R
Nr=1 —xw" 0 0 0
0 —yo™ O 0
1 N i .
=3 glw"’—’f’A(r), (8)

where @ = exp (2wi/N).

A possible set of time contractions on a product
of operators can be represented by a diagram so that
summing over all the contractions is equivalent to
summing over all the diagrams. The diagrams that
result from Eq. (7) will be closed loops, together with
a line starting and ending with the operators A*u),
AY(r). For example, the diagrams in Fig. 1 represent
a possible contraction on the products

A(u) A'v) AP(jy) A(j1) A(jo) A%(j2)

AP(jr) A%(jr) A7(j2) A%(j2),
respectively. Thereisafactor (—1)?appearingin Wick’s
theorem, but this is easily accounted for since p is even

and

for a line graph and odd for a single closed loop
graph.

Now a diagram with n vertices (excluding the
vertices # and v) in which all of the vertices have
different values of j; will occur 2"n! times, since there
are n! ways of choosing these vertices from the
products in Eq. (7) and the 2" arises from the fact that
each vertex can be either

A?(k) A%k) or —A"(k) A*(k).

If all the vertices do not have different values of j,
and if v, have the same value k;, », the value k,
etc., a given diagram will occur n! 2%yt p,! .-« p,!
times. However, if these vertices are identical, in
drawing all the graphs joining the n points we get
n! ! - v! graphs topologically the same. Thus, in
summing over all graphs of n vertices, each one
appears n! 2" times, which means we need only sum
topologically different diagrams and multiply the
contribution of these by n! 2". This factor cancels the
1/n! 2" factor appearing in Eq. (7). This means that in
summing over topologically different diagrams the
contribution from a given diagram depends only on
the time contractions represented by the diagram.
Hence the contribution from a disconnected diagram
is the product of the contributions from its connected
components. Thus we can factorize out the summation
over all closed loop diagrams.

over all

Summation [
graphs

summation over | [ summation over
line graphs loop graphs

But the summation over all loop graphs is equivalent
to evaluating

O TS(N) 10) = Z,.
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Hence to evaluate the Green’s function we need to
sum only over all line graphs. The contribution from
a line of n + 1 points is

,kp,_ql e kp"_lq,,_l As‘h(uyjl) Aplqg(jl 9j2) e

X Al’n—z"n—1(]'n_2 ,jn—-l) Ap"_lt(jn—l s U).
Let L, be the contribution from summing over all
topologically different graphs of (n 4 1) vertices,
starting at # and ending on v. Then

N 4

Ln = z z k’Plal e kﬂn—lqn—l

ii=1p$;0;=1
X Asql(u’jl) e Ap"_lt(jn—l ’ U),
which when written in terms of the matrices A(j, k) is
N
L, =3 A(u, jDkAGs, jo) - kA'(jper s 0),
ji=1
where A°T is the sth row of the matrix A. Substituting
in Eq. (8) we get
L,= N~ Z PR -+r..(;‘,._1—v)As’T(rl)k - kA’(r,,)
ji.T;

= N_I% wr(u—w)AsT(r)(kA(r))n—zkAt(r).
r=1

Summing over all L, we have

o N
Gu,v)=N1Y

n=1r=

N
— N—l zwr(u—r)AsT(r)
r=1

wr(u—v)As'f(r)[kA(r)]n—2kAt(r)

1
X ————— AT (kKA ).
T kagy A
Writing the Green’s function as a 4 X 4 matrix gives
N 1
G(u, v) = N TV 4(r) ——. 9
(6 = N= 20 A O

The elements of the matrix A(r)}{(1 — kA(r))™* are
A(r(1, 1) = x¥(0™™" — ™),
A(r)(1, 2) = xpo ™" — X2y~ — xpto’ — x2)2,
A(r)(1, 3) = xo" — xyw"(@™™ + ™)
— x%(1 — y®) + xy?o’,

A, 4) = —xp20" — X2 + xpo™HIT — x2pomr,
A2, 1) = —xp™V7 4 xp2w" + X2po™ + x%y?,
AGY2, 2) = X" — ),
A2, 3) = —xTyo™ — x%? 4 xyo!™HVT — xp20T,
A2, 4) = yo™ — xpo™ (0" + o)

— 41 — x%) + xZyo™,
A3, 1) = —xo 7 + xXyo~(@™ + &™)

+ x¥(1 — yz) —_ xy2w—r’

R. W. GIBBERD AND C. A. HURST

A(r)(3,2) = —xpa DT 4 x2ygy—mr
-+ xyzw—r + x2y2’
AG)G, 3) = (@™ — &™),
A3, 4) = —xy2w" — xH? + xyw(m—l)r — xtyo™,
A(r)(4, 1) = —xpwmHD7 4 xy2ey
+ Xy~ 4 x%2,
A(N@4,2) = —yo ™ 4+ xyo™™ (0" + ©)
+ y¥ (1 — x*) — yxPow™,
A(r)4,3) = _...xyw(—m+1)r + xyzwr
+ x4 X,
AW, 4) = — 0o — ™),
Alr) = (1 + x3)(1 + »®) — x(1 — yH)(0" + 0™
=yl = (™ + w™™). (10)

This completes the definition and evaluation of our
Green’s function.

4. EVALUATION OF CORRELATION FUNCTION

We have expressed the correlation function as
_ @ 1 k , . . n
() = X2 O T 14 5 [ S A7) A)]
n= . L=

x (xlz —~ 1)”3(1\1) 0. (11)

To evaluate this we again use Wick’s theorem, which
means summing all diagrams in the above products.
Now, if the factor S(N) were not present in Eq. (11)
we would sum over all diagrams, whose contributions
would be given by the time contractions A4%%(j, k).
These diagrams that arise from the series part of
Eq. (11) and not from the factor S(N) we call
skeleton diagrams. It is clear that since the operators
appear in pairs the skeleton diagrams are going to be
closed loops. Now, by a familiar technique used in
field theory, when we include the contributions from
S(N), we sum all possible skeleton diagrams, but
instead of using the propagator 4*%(j, k) we must now
use the Green’s function G*(j, k) to determine the
contribution from a diagram. For, as we have already
seen, the Green’s function is a summation over all
diagrams between two points and so the above
technique is equivalent to summing over all skeleton
diagrams where now each line in the skeleton diagram
represents a partial summation over all possible
diagrams between two points. The contribution from
the sum over skeleton diagrams will have to be multi-
plied by Z,, which takes account of all the closed
loops arising from the factor S(¥).

To sum all the skeleton diagrams which arise from

© k n
[1+3 [ Bmroro(z-1)]]

n=1 n! | i=1



NEW APPROACH TO THE ISING MODEL. II

we first notice that the factor 1/2"n! can be removed
by summing only topologically different diagrams.
This means that the contribution of a disconnected
graph is the product of its connected parts. This fact
enables us to use the linked cluster expansion

sum over all diagrams =
exp [sum over connected diagrams].
Thus we have to sum over topologically different

connected loops. The contribution from a single
n-point loop is

k1’)101 T kzlJnaanwz(jl > J)G?(ja, ]3) e Gqﬂm(jn 2 J1)

1 n
X = -—1}.
()

Let L, be the contribution from the sum of topologi-
cally different loops with n vertices. Then

k 4 __ 1

L,=3Y — kpe, ks

ji=lp;,q;=1 2n Pnin
] 1 "
X GU(jy, ) - - GO, jo) (x— - 1) :

where the factor 1/2n comes from the fact that in
summing over p,q,j we get each graph repeated 2n
times since it is a cyclic graph. The minus sign comes
from the factor (—1)? which occurs in the definition
of Wick’s theorem. Hence

< 1 s NN "
Lo=3 =5 TeKGGu)0 K GG (5~ 1)

=1 2n X
< _ 13 Uir=da)+ + +* talin=d1)
— I N—nw’r]_ 11— o Trplin—21

2 n r,z=1

x [e(re(ry) - - - e(r,)] (;1— - 1)", (12)

ji=1

where
c(r) = [_x2 — x2y2 _ xzy(wmr + w—mr)
+ xo™"(L = yH)AE).
The last step in Eq. (12) is given in the Appendix.
When the size of the lattice is very large, we can

convert the summations in Eq. (12) to integrals. If we
write

r=s+ (@ — n
and set
$ = 2mms|N; 0 = [2m(c — 1)fm] + ($fm),
we obtain

o" = exp (i0); ™ = exp (i$).

The summation XY, is equivalent to > , 3%, and

in the limit of large n, m this can be written as

1431

Then Eq. (12) becomes

s _1 1 ("4 ... 40 4 d
L = _ = ceedo, - dé,
n jgl n (277)2,2 J; 1 ¢1 95

X ei01(11~ia)+ oo o+, (ip—171)

X [e(0;, $)c(0s, be) -~ (0> m(xlz - 1)",

where
c(f, §) = [—x* — xBy® — 2xBp cos ¢
+ xe~*%(1 — y»))/A, ¢)
with
A, ) = (1 + x3(1 + y») — 2x(1 — »?)
% cos § — 2y(1 — x?) cos ¢.

The integrals over the ¢, can be evaluated immediately
since the following relation holds®:

[ ek (- 1) =1 - 12,

X
where f(6) = u(e®®)[u(e-),
u(e®) = (1 — B}l — Aoy,
A=(=p/x1+y), and B=x(1— [ +y).
Thus,

1 k 1 27
L,=-1% f do, -
ni=1(2m" Jo

x g0lh—id+- - +i05 (5~ 71)

x [1 —fﬁﬁ] . [1 —ﬂzﬂ] (13)

X

.- db,

We can simplify this multiple integral by defining
the operator P, by

k 2r
Ph(o) =3 = [ doer-on(p),
j=1 27 Jo

P, is a projection operator which projects out the
frequencies 1 to k of the Fourier series of A(¢). We
also define P,fas an operator which acts on a function
h(¢) as follows:

k 27
(PSS = 3, 5 [ a8 -21O)h(6).

i=1

If we now introduce an extra integral and delta
function

27 27 ©
[[asece )= "ap 3 enesn
0 (1] l=—o0

into the multiple integral expression in Eq. (13), we

8 Reference 7, p. 139.
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obtain

1
L,=—-~
" n l.--uo 5. 127 ”+1f d¢

XJ dOieil(¢—0”)eij1(01—on) e
0

x [1_&:2][1-%’—)]

We can then use the above definition of the operator

P, fto write this as

L,=-13 1
Ni=—o 27

$in(Pp—0p_1)

2”d¢e”¢Pk(1 —f;)

cfi=)-nfi e
L5 & [uenfi- 4

= —(i/m) Tr [Pk(l —f:—c)] : (14)
Thus we have the result that
§an = Trlog [1 - P,,(l —f)—c)]
= log ({s:8%41)x7"). (15)

This expression is the same as that obtained by
Kadanoff,® although the derivations are seemingly
unrelated. Also, this expression is simply related to the
integral equations used by Green® and by Hartwig,'°
and the Toeplitz determinant of Montroll, Potts, and
Ward! to evaluate the correlation functions. The
integral equations can be obtained from Eq. (15) by
writing

Trlog {1 — P,[1 — f(0)/x]} = log fI A
where A, are the eigenvalues of the equatilo;
[1 = P, + PofO)/xud6) = Au(6).
Multiplying by (1 — P,) gives
(I — Pu(0) = (1 — PYAuy0)

and hence u/(0) = P (0) for A, # 1. Multiplying
Eq. (16) by P, we get

P Yf(O)uy6) = A,Puff) = Au0), 4 # 1.
This is the integral equation which was derived by
different methods by Green and Hartwig.

The Toeplitz determinant of MPW can also be
written in the form of Eq. (15). We regard f(e®®) as a

(16)

* H. S. Green, Z. Physik 171, 129 (1963).

1¢ R. E. Hartwig (to be publlshed)

11 E, W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963), to be referred to as MPW.
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Toeplitz matrix with elements f,_; given by the
(i — j)th Fourier coefficient of f(e®). The projection
operators P, when written in matrix notation have
zero elements everywhere except the diagonal elements
(1, 1) to (k, k), which are unity. Then Eq. (15) can be
written log ({s;8;.,,)x*) = log det (1 — P, + P,x7Yf),
which gives the same result as MPW.

The evaluation of Eq. (15) can be carried out in a
variety of ways. The generalization of Szego’s theorem
enables us to evaluate the Toeplitz determinant form
of Eq. (15). This is the method used by MPW. Green
was able to solve the integral equation form exactly
because f(e'®) can be factorized and then its inverse
can be found. The method presented here was first
given by Kadanoff.® It also relies on the fact that we
can find the inverse of the operator P,f(6) as k — oo,
and hence is related to Green’s method. The technique
when applied to the matrix representation of P.f(6)
gives us an alternative proof of Szego’s theorem,
which is given later. Thus it appears that all the
approaches are closely connected.

To evaluate Eq. (15) we take the perfect differential
of the equation with respect to the variables 4 and B.

d log (s,5p,1) = zdL + kﬂ‘ (17

Using Eq. (14) we obtain
dL, = +Tr {P[l — x Y(O))P,}" 1P d[x f(6)].

The extra operator P, which is inserted simplifies the
future work and makes no difference to the expression
since P = P,.

idL,, = Tr (l — P, + P (O)P)P, dlx"(6)].
(18)

To evaluate the inverse of [1 — P, + P.x"Yf(6)P,] we
use some properties of u(e?). Now, u(z) = (1 — Bz)t
X (1 — Az)~* has a single singularity at the point
z = A7Y, and u~Y(z) has a singularity at z = B If
the low-temperature case T < T, is considered, it
can be shown!! that B < 4 < 1. Thus, the singular-
ities of u(z) and uw(z) lie outside the unit circle.
Hence u+'(z) are analytic and can be expanded as a
Taylor series inside the unit circle.

u(z) = Zu z" ui(z) =Y u,z™
If we define =
P =1limP,,
k>0

we see that P projects out all positive frequencies of
the Fourier series, and (1 — P) the negative frequencies.
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Since u*!(e*®)P consists of only positive frequencies
the following equations are true.
(1 — Pyu*'(®)P = 0,
u:tl(eiO)P — Pu:tl(eiO)P’
Pu*(e™®)(1 — P) =0,
Puﬂ:l(ez‘()) _ u:tl(eiO)P — Pu;tl(eio)(l — P).
Using these equations we can see by multiplication
that [1 — P + uY(e*®)Pxu(e—*)] is the right and the
left inverse of [l — P + Pf(0)x'P]. Substituting this
into Eqs. (17) and (18) we get
dlog M = Tr {u~(e®)Pxu(e~*) d[ f(®)x7"]}
+ lim kx™ dx,

k= o0

(19)

(20)
where
M = lim <Slsk+1>

k-
is the magnetization.
AL @] =1() dx) + u e ) du(e®)

+ u(e)xTdu (e )] (21
Substituting Eq. (21) in Eq. (20) means we have three
traces to evaluate. The first one can be evaluated to
give

—lim kx7! dx,
k-0

which cancels the last term in Eq. (20). The trace
involving the third term in Eq. (21) gives the inter-
esting contribution and we evaluate this explicitly.
Using the last equation in (19) we have to evaluate
Tr (Pu(e ™) d(u™"(e™*))

— Tr (Pu7'()(1 — P)u(e® d log u(e)). (22)
The first term here is similar to the trace obtained from

the second term in Eq. (21) and when written out in
full is

27 d¢ 0 'l¢f2” d0 @ - B .
e - ¢ dl 0 —ilf
0 27 lzw o 2m gle ogu(e™™)e
=2, f 49 dlogu(e®) =0
i=1J 2w

since the integral is zero. The second term of Eq. (22)
is

_J’Zﬂ ﬂ) E eil¢f2” _‘& i eii1(¢—01)u~l(ei01)
[ 0

271" 27 =1

27 0
xf d_e_z Z e—ug(el—o,)u(eioz) d log u(e—ivg)e—-iwg
0

271' Jg=0
27 o o o
= —f d—61 2 eih(oz—ﬂﬂu—l(eiol)f _‘& z
o 2m =1 0 2m s=o0

X e—-i :fa(ol—-Oz)u (eiag) d log u(e—wg)

@ 0 o
==33 f dd, etalrtialy | u(e®) d log u(e ™).
i1=1 /=0 Jo 27
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Now the summation over j; and j, is such that
J1+ ja =i occurs i times. Hence the above can be
written

< 2 d6 + 130,17 10 — i
-3 — je'"®uu(e®) d log u(e™)
=1 Jo 2
=i f g d% [ (e®)]u(e®) d log u(e™™)

if g—g Zdé log u(e'®) d log u(e ™).

Substituting the explicit expressions for u(e®) we
obtain

dlogM
_; f‘" gg[l ( —iBe® 4 _ide? )
o 274\l — Be?® 1 — Ae®
—dBe dAe*
% (1 — Be™® + 1— Ae‘“’)]
_ § dz l:l( —Bz Az )
27iz|4\1 — Bz 1 — Az
—dBz ! dAz™?
% (1 — Bzt + 1— Az"):l
_ _1/dB-B _ AdB dAB AdA
——4(1—BZ_I—AB—1—BA 1—A2)

= 3dlog [(1 — B*)(1 — A%)(1 — AB)’].
Integrating we obtain
M8 = (1 — B%(1 — A%)/(1 — AB)%.

The constant of integration is zero, since M =1 at
zero temperature,

This is the exact result for the magnetization of a
square lattice for temperatures below the critical
temperature. For temperatures above the critical
temperature we can show that B <1 but 4> 1.
Hence our expansions for u*!(z) do not hold for the
high-temperature case. However, we can obtain some
similarity between the high- and low-temperature
cases if we consider f(z) as given by

[(2) = v(@)[zv(z)] 7,

v(z) = (1 — B2)}(1l — 4 12)h

where

Now v(z)*! are analytic inside the unit circle and
hence have expansions which only have positive
powers of z. However, the extra factor z in the
definition of f(z) now prevents us from finding an
inverse to the operator [1 — P + Pf(e*)P]. In fact,
the presence of this extra factor z means that this
operator has a zero eigenvalue with an eigenfunction
e'%3(e®). We have already shown that M = ]2, 4,
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and hence M = 0 provided the product of the re-
maining eigenvalues is finite.

Some justification of the last statement can be
provided in the following way. We notice that the
operator can be factorized into

(1 =P+ Pe™P) x [I — P + Po(e®)v(e"™)P].
Using the relation

Trin(AB)=Trln 4 + Trin B,

we get
InM=Trin (1 — P + Po(e®)v (e *)P)
+ Trin(1 — P 4+ Pe®P). (23)
If the first term on the right-hand side of Eq. (23)

is evaluated by the same method as was used in the
low-temperature case we obtain

In(1 — A73)(1 — B)(1 — A*B)%
The second term in Eq. (23) can be evaluated by
writing
Trin (1 — P + Pe®P)
=limTrin (1 — P, + P, *P,)

k>
=limIndet (1 — P, + P,e™P,).
ko
This determinant has ones on the diagonal elements
except for the elements (1, 1) to (k, k) where there are
ones on an off-diagonal. It has the form

4 1
13 .
1] .
£l
:
H
:
H
! o i o
;
1
i
'
H
;
¥
- - RS

St U
4 3
1O ;
H
:
o1l ;
:

0] ! 0]

:
:
P
; o |
1 +
1} [}

........................................................................
1 t
t )
1 13
T 1]
1] i
i ¥
* ¥
1 3
3 £l
: :

O i O i |

: |
1} 1}
13 3
4 3
1] 1]
! H
; :
12 I3
! :

This determinant is obviously zero. In the limit as
k — oo the determinant remains zero. This definition
of the value of the infinite determinant is in accordance
with the physical representation of an infinite lattice
as a limiting case of a sequence of finite lattices, and
so is the most natural one to choose. If instead the

R. W. GIBBERD AND C. A. HURST

infinite determinant were evaluated by just calculating
its eigenvalues an ambiguity would arise because the
operator Pe~*P is non-Hermitian and possesses a
continuous infinity of eigenvalues in the region of the
complex plane |4] < 1.In a certain sense this approach
still Jeads to the conclusion M = 0, but it is more
difficult to justify. Substituting these results into
Eq. (23) we see that the magnetization is zero for all
temperatures above the critical point.

5. PARTITION FUNCTION
In this section we show how the partition function
can be calculated using the expressions we have
already obtained for the Green’s function. Starting with
the expression obtained in I for the partition function
we have

N
= ©| Texp[z 3 i A”(;)A“(;)] 10).

j=1mp.¢=1

Taking the differential with respect to x and y of this
expression gives us

dz, = | T[E 3K A”(j)A“(j)idx

j=1 p,q=1

+ %kiiqA”(j)A"(j)i dy] S(N) [0y,

where
0 0 -1
0 0 -1 0
k= ,
1 1 0 -1
0 0 1 0
0 0 0 ~1
0 0 0 -1
k' ==
0 0 0 -1
1 1 1 0

Using the definition for Green’s functions, we obtain

Z_3 s [%k;,,c”"o D + 167G, ) ”}
Z, i=1pi=1
N 4
% 3 Y v 2o
i=1p.a=12 y
N
=STi(K T e —) GG J)-
= 2\ x y
Now
G(j,)) =— SA(r
G, D= er ()1—-kA()

and it can be seen that

( A% __;_);4(,) = dA(".
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Thus,
N
i _ S Trdagy —1—
=t 1 — kA(r)

N
dlogZ, =3 d Trlog [l — kA(r)].
r=1
Integrating gives

N
log Z; = 3 log det [1 — kA(r)],
r=1

which is the usual expression. Kadanoff® has cal-

culated an expression for the partition function in a

similar manner to the above using a Green’s function

which is based on the algebraic approach.
APPENDIX

We give here an outline of the proof of Eq. (12).
Using Eq. (9), we see that k'G has the structure

_a4

where a; = ~G%, g, = —G%*, qy, = —G*, and b; =
G 4+ G2 — (34 The zero entries arise since

N
d(w"— o) =0.
r=1

Thus the trace of k'G is (a; + a, — a) + by, which
on substitution of the values from Eq. (10) gives

Tr (kK'G) = b, + b3,

TO THE ISING MODEL. II
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where
N ( n .
by(j1,Jje) = glw irie)
x [_x2y2 — x2 — xzy(wmr + w—mr)
+ xo7"(1 — AN
Similarly ¥'G, k’'G, can be written

a, a, 0 a,
a; as 0 a,
0 b, by by
—a, —a, 0 —a

A A, 0 A,

9 A, A, 0 A,

0 B, By B,

—A, —A, 0 —4,

from which we obtain
Tr (k'G, k'Gy) = by By + bgB;.
We can repeat this procedure obtaining
Tr (k'G, k'Gy - - - k'G,,)
= by(1) bs(2) - + - by(m) + b3(1) b3(2) - - - by (n).

The summation over r, means that the contribution
from the complex conjugate b* is the same as that
from b. Hence we obtain Eq. (12).
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The Clebsch-Gordan series for SU(3) is given in terms of irreducible representations of SU(3) such
that the “outer” multiplicity of the Clebsch-Gordan series is related to the “inner” multiplicity of irre-

ducible representations.

1. INTRODUCTION

N the direct product D(m) ® D(m’) of two irreduc-

ible representations with highest weights m and m’,
respectively, the D(m)® may be considered as an
operator acting on the state vectors of the irreducible
representation D(m’). It has been shown that this
operator can always be classified as a tensor operator
[transforming under SU(n) as states of the irreducible
representation D(m)] and, moreover, that this
operator has precisely dim [(/m)] independent matrix
elements.! The advantage of this operator point of
view lies in the fact the Clebsch—Gordan series itself,
D(m) ® D(m') from which we started, may contain
fewer than dim [(m)] terms. (This corresponds to
symmetry vanishings of the reduced matrix elements
of the operator.) Both points of view have intrinsic
advantage, the operator view for general relationships,
and the “representation view” for practical appli-
cations.

The present paper is concerned with the latter view
and the Clebsch-Gordan series for SU(2) and SU(3)
is examined. It is shown how the ‘“‘outer multi-
plicity” of the Clebsch-Gordan series can easily be
related to the “inner multiplicity” of irreducible
representations. (The terms stem from Ref. 2.) As an
example, SU(2) is first treated in some detail.

2. ““OUTER-INNER”’ MULTIPLICITY
FOR SU(2)

The weight space of SU(2) is a straight line, as is
well known. As for all SU(n) groups this space can be
embedded in a Euclidean space with one more
dimension, the straight line being given by (x, —x).
The weights m = (m,, m,) lie on that line, and thus
my; = —m,. The two roots of SU(2) are (1, —1) and
(=1, 1). Ry, half the sum over the positive roots, is

1 L. C. Biedenharn, Phys. Letters 3, 254 (1963).
2 A. J. Macfarlane, L. O’Raifeartaigh, and P. S. Rao, J. Math.
Phys. 8, 536 (1967).

then given as Ry = (1, —1).® Any weight of SU(2)
is an integer multiple of R, (see Fig. 1).
From the relation®

x(m)X(m + Rg) = 3 X(m” + Ry), 1

where the exponents of the character y(m’) contain
the weights of the irreducible representation D(m’)
and where X(m 4+ R,) is the elementary alternating
sum® of m + R,, it can immediately be seen that if
D(m’) is chosen to be smaller or equal to D(m), i.e.,
m’, < my, there corresponds to each weight i’ € D(m")
one and only one term on the right-hand side of (1)
and thus one irreducible representation D(m"). This
is true, since if m; < m,, so m; < m; + } and thus
the sum of the lowest weight of D(m’), namely —m’,
and m + R,,

(m + Ry) — ', @

can never reach the origin and therefore also not the
negative part of the weight space, see Fig. 1. This is
Biedenharn’s lemma applied to SU(2).%

However, if D(m") is now admitted to be larger than
D(m), some part of the weight diagram of D(m’) may
cover the zero (the singular hyperplane) and, in
general, also negative values. This domain is re-
sponsible for the deviation of the outer multiplicity
from the inner multiplicity. From the definition of the
elementary alternating sum it can be seen that the
elementary alternating sum of the zero weight is zero,
while the elementary alternating sum of the negative

3 This embedding, trivial for SU(2), becomes of advantage for
n 2> 3 (for instance with respect to the properties of the weights
under the Weyl group).

4 D. Speiser, Group Theoretical Concepts and Methods in Elemen-
tary Particle Physics, F. Giirsey, Ed. (Gordon and Breach, New
York, 1965), p. 201; J. P. Antoine and D. Speiser, J. Math. Phys.
5, 1226, 1560 (1964).

5 H. Boerner, Representations of Groups (North-Holland Publish-
ing Company, Amsterdam, 1963), Chap. 7.

8 F. Zaccaria, J. Math. Phys. 7, 1548 (1966); B. Vitale, Nuovo
Cimento 44, 291 (1966).
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@11\1‘&6"@ &
A4

Fia. 1. D{m") & D(m): the encircled points are the ones
obtained if D(m’) is superimposed to the point m -+ R,.

weight of (2) is equal to the elementary alternating sum
of that weight reflected on the zero point, apart from
a change of sign. Thus the elementary alternating sums
of the negative weights cancel pairwise with their
reflected counterparts. However, all the elementary
alternating sums that cancel (and possibly the one
equal to zero) just form the weight diagram of the
irreducible representation D(m’ — (m + R,)). There-
fore, the Clebsch—Gordan series for SU(2) can be
written in terms of irreducible representations as
Dw3®mm=_g)mm+ﬁj

meD{m’

- 2 D(—Ry + m’), (3)

m'eD(m’—{m+Ry))

where the two sums go over all weights /&’ of D(m")
and D(m’ — (m + R,)), respectively. It should be
noted that in the sum D(m) with negative m can occur,
i.e., my < 0. These terms D(m) do not correspond to
irreducible representations and always cancel out in
(3). Also, the second term of (3) does not contribute
when m’ — (m + R,) is a negative weight, since then
D(m’ — (m + R,)) is not an irreducible representation.

3. “OUTER-INNER” MULTIPLICITY FOR SU(3)

The consideration of Sec. 2 suggests that also in the
case of SU(3) it might be possible to relate the highest
weights of the irreducible representations which cause
the deviation of the outer multiplicity from the inner
multiplicity to irreducible representations of SU(3),
as happens to be the case for SU(2). Thus, again
forming

D(m + ),
meD(m’)
which is the Clebsch—-Gordan series of D(m') ® D(m)
for the case when inner and outer multiplicity are the
same, irreducible representations have to be sub-
tracted from this expression in order to account for
the deviation from the inner multiplicity.

As in the case of SU(2) the two-dimensional
weight space is embedded in a three-dimensional
weight space in the usual manner (Fig. 2). For
any weight m = (m,, my, mg) of SU(3) then m, +
mg + my = 0 holds. For convenience, the (p,q),p =
m, — My, q = my, — my, Notations are used.

In order to simplify the situation the direct product

1437

D(p,q) ® D(p’, ¢} is always taken such that
pHesp +4 +1 4

Condition (4) ensures that only the fundamental
domain and the two neighboring domains can
contribute to the multiplicity structure of

D(p,q) ® D(p', ).
Moreover, the direct product D{(p,q) ® D(p’,q’) is
limited at first to direct products of the form

Dimry@Dip+n—1,n—1),n>1 (5

such that one half of the fundamental domain is
covered by these direct products. The rest,

D(m,r)® Dn—Lp+n—1),n2>1, (6

can be easily obtained afterwards from symmetry
arguments. The integer n can be thought of as the
distance of the point (p + n, n) from the point (p, 0)
in terms of the vector R,. Then, if the direct product
(5) is formed, the following observations are made
(Figs. 2-5).

(a) If the domain of the irreducible representation
D(m, r) overlapping into the two neighboring domains
is reflected on the singular hyperplanes [as in the case
of SU(2)] the (two) regions thus obtained in general
do not correspond to single irreducible represen-
tations. But these regions can always be covered by
several overlapping irreducible representations, over-
lapping in such a way that care is taken to the
multiplicities of the points contained in the part
leaking out of the fundamental domain.

+n+m, n4r}

Fic. 2. D(myr) ® Di{p + n— 1, n— 1) for n < r. The vectors
A, B, C, D, E, indicated above are for the general case, thus ignoring
the particular values of the diagram (m = 6,r =3,p = 6,n = 2).
These points are then given by A: (p+ n~m~r,n+ m); B:
p+n—mm+n+n, C:(p+n—r,n—m; D:(p+n+r,
n—m—ry E:(p+ 3n—r~2,—m+ 1), as can be seen easily
by using the Weyl group, o, = (I, —1,0), a4, = (0, 1, —1). With
the help of these points and Figs. 3-5, the statements made in
Sec. 3 can be verified. The dots (circles) indicate the centers of the
irreducible representations.
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p+n+m, n+r)

(p+n, n)
- W o e -l e * a
T
oy %
» R ) \——-.m_-—r---,-ﬁ » =
\ / 4
Y
” x 2\ __,(___..’. x
N/ N p; //
> ) % % o= «
N 2NN
L) Ll 'y A 4 N q
1A 1 1

F1G. 3. The case n > r. (See caption for Fig. 2.)
In this example: p =0, n = 5.

(b) The centers of these irreducible representations
all lie on the singular hyperplanes [as they do for
SUQ2)].

(c) At most one nontriangular irreducible repre-
sentation can occur. This is the case for m # 0,
r — n > 0. It is the irreducible representation

D(m, r — n). )

(d) The point, (p + n,n), its reflected image

(p + 2n, —n), and the point (p + 3n,0) form a

triangle in whose center the center of a non-

triangular irreducible representation lies. Thus, its
center lies on the point

(p + 21n,0). (8)

(¢) The centers of the triangular irreducible repre-
sentations lie equidistant from each other, the distance
between two neighbors being (2,0) or (0,2). The
dimensionality of the irreducible representations is
increased by going along the positive p axes, de-
creased by going along the positive g axes.

(f) The series of triangular representations along the
g coordinate starts at the point (0,2n + p —r),
giving the series
(0’2n+P_r),“" (0,2n+p—r+2k),-'-,

©,2n+p+7r).
The corresponding irreducible representations are

Dm+r—~p~n0),---,
D(m+r—P_n_k’O)"“s
Dm — n— p,0).

Thus the series terminates either for kK = r or when
Dm+r—p—n—k,0) becomes D(0,0). This
implies that D(p, q) with a negative p and/or ¢ are

omitted, they do not correspond to irreducible
representations.

(10)

BRUNO GRUBER

Fic.4. A:(p+n—mn-+m); B:(m —n — p, 2n + p);
C:(p+n+mn); D:(p+ n,n— m).

(g) The series of triangles along the p axes begins
for n <r at the point (p +2n— (r —n) — 2,0)
giving the series

p+3n—r—20), -,
p+3n—r—-—2-2k0),-,
(p+n—r0),

and the corresponding irreducible representations

D(m_ 1,0),’D(m_ 1 —k,O),"‘, (12)

D(m — n,0),

where again this series terminates for k =n — 1 or if
D(m — 1 — k, 0) becomes D(0, 0).

For n > r a series of triangles occurs with centers at
the points
@+n+r0, -, (p+n+r—2k0), -,

(P + n-—r, O)

(11)

(13)

Fic.5. A:(p+nn+r); B:(p+n+r,n—r);
Ci(p+n—r,n).
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with the corresponding irreducible representations
D(m+r_n’0)’.”’ (14)
Dim+r—n—k%k,0), -+, D(m—n,0).
Again this series terminates like the ones above.
(h) For irreducible representations of the form
D(m, 0) it can be deduced from Fig. 4 that at most the
two irreducible representations

D@m —n,0), Dim —n—p,0) (15)
with their centers at the points
(P + n, 0)9 (0’ 2n — P) (16)

have to be subtracted.

(i) For irreducible representations of the form
D(0, r), Fig. 5 shows that at most the two irreducible
representations

DO, r — n),
with centers at

DO, r —n—p) (17)

@+ 2n0), ©On (18)

have to be taken into account.
Knowing these facts it is now easy to write down the
Clebsch-Gordan series for

Dm,r)@ D(p +n—1,n—1).
However, it has to be done in four pieces.
Dim,rn®D(p+n—1,n—1)
= 3 D((p+n—1n—-14+("q)

(9”,0"Ye Di(m,r)
-2 > D((p+n+r—1—2i—1)

i=0 (»",0")e D{m+r—n—i,0)
+ (", 9")
-2 > D(-l,p+2n—r
i=0 (p",¢" e D{m+r—p—n—i,0) .
— 1420+ (p", q")
for n2>r;m,r#0, (19a)

= > Dlp+n—1Ln—-1+("q"))

(p”,94"YeD(m,r)

L= 2 D(p+2n~1,-1)+ (" q7)
(p”,q")e D(m,r—n)
n—1
-2 > D((p+3n—r—3—2i-1)

i=0(p",q")e D(m—1—i,0)
+ (pl,’ qI’))
r
-> > D{(~1,p+2n—r

=0 {p”,0")e D(m+r—p—n—1i,0)

—14+2)4+(p",9")
for n<r;m,r#0, (19b)
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= 2 D(p+n—1,n—-1+@" 49"

(2”,q4")e D(m,0)

- > D(p+n—1,—1)+ " q")

(»",¢")e D(m—n,0)

- S D(—1,2n+p—1)+ (", q")

(p”,4")e D(m—n—p,0)
r=0, (19%)

for
= 2

D(p+n—1n—-1+("q)
(p”,q")eD(0,r)
- 2 D((p+2n— 1, -1) + (¢, 4")

(p”,a")e D(0,7—n)
- > D((—1,n — 1) + (p", ")),

(p”,0")e D(0,r—n—p)
for m=0, (19d)

where m + r < p + 2n — 1. The sums 3 . rcpia)
always have to be extended over all weights (p”, ¢") of
the irreducible representation D(p, q), i.e., multiple
weights are to be taken as many times as their
multiplicity is. Again, as for SU(2), D(p,q) with
negative p and/or ¢ can occur in the sum. However,
all these D(p, q) cancel out. If such a D(p, q) occurs as

(o".a"eD(»,o) tHiS sum is to be deleted, since D(p, q) is
not an irreducible representation.

The Clebsch-Gordan series for

Dorymy@Dn—-1,p+n—1), m4+r<p+2n—1

is obtained simply by interchanging the p and ¢
components on the right-hand side of (19).

4. REMARKS

The connection between the inner and outer
multiplicity in terms of irreducible representations as
given above seems to be unique in spite of the fact
that there exist examples where the irreducible
representations to be subtracted can be chosen
differently. So, for instance, in Fig. 2 the two irre-
ducible representations on the lower hyperplane
could be chosen to be D(0, 0) and D(0, 1) (at different
points) instead of D(1, 0) and D(0, 0). However, as
soon as one goes to the general case (Fig. 3), it turns
out that the latter choice has to be taken.
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We examine the quantum dynamics of particles with arbitrary spin implied by explicit use of the
infinite dimensional unitary representation of the Lorentz group, introduced by Majorana. Comparison
with the classical theory of spinning particles shows that this unitary representation leads to a quantum

mechanical analog of the relativistic pure gyroscope.

I. INTRODUCTION

ECENTLY there has been much interest in the
possible application of the infinite dimensional
unitary representations of the Lorentz group to the
elementary particles. To enhance this point of view
it is the purpose of this paper to study the dynamics
derived from the first-order wave equation for a point
particle of arbitrary spin when the matrices involved
are Majorana’s infinite dimensional unitary represen-
tation of the Lorentz group.!

Fradkin? has recently called attention to Majorana’s
original paper on the subject of the unitary repre-
sentations. We make explicit use of the properties
of Majorana’s representation to display the quantum
mechanical counterpart of the classical pure gyroscope.

The classical relativistic point particle, with spin
which satisfies the criteria for a pure gyroscope,® is
first presented in its Hamiltonian formulation. We
then develop the quantum dynamics associated with
the Majorana representation and by a comparison
based on the traditional Poisson bracket, commutator
bracket correspondence, infer that the quantum
description of the pure gyroscope must utilize the
properties of this unitary representation if the corre-
spondence is to be valid for arbitrary spin.

II. CLASSICAL DESCRIPTION

The classical relativistic pure gyroscope is a charged
point particle with spin. The magnetic properties of
such a particle are described by the antisymmetric
spin tensor s,,, which satisfies the supplementary
condition

Y

where x, = (x, ict), and v, = X, = dx,[dr is the four

s uvvv = 0,

* This work was sponsored in part by the TRW Independent
Research program and the Office of Naval Research.

! E, Majorana, Nuovo Cimento 9, 335 (1932).

2 D, M. Fradkin, Am. J. Phys. 34, 314 (1966).

3 Many authors have discussed this subject. The most concise
statement of the theory, together with a most complete reference
list, is to be found in the book by H. C. Corben, Classical and
Quantum Theories of Spinning Particles (to be published), Sec. 8.

velocity when r is the proper time, and v,v, = —c%
The supplementary condition (1) is the covariant
statement of the vanishing of the electric dipole
moment in the rest frame.? If 7, denotes the kinetic
four momentum P, — e/cA,, then the description of
the pure gyroscope motions is given by

m, = mv, — 5,0, 2)
w, = e[cF,pv,, 3)
$,y = WO, — WD, “)

In order to obtain a Hamiltonian formulation it is
necessary to know the functional relation between
velocity and momentum. This is readily obtained by
multiplying (2) by s,,5,,, making use of (1), and the
identity®

_zspdsausuv = (saﬂsaﬂ)spv . (5)
The necessary relation is then seen to be
mv, = 1, + 2(5,,5,,7,/S2pS2p)s 6)
where in virtue of the equations of motion, 5,45, is a
constant of the motion. Writing v,7, = —mc? in
the form
7, + mc?) =0, )

Equation (6) permits the form (7) to be identified as
the covariant Hamiltonian
2
w7 mc
H = £t + —
2m 2
We are justified in calling (8) the Hamiltonian for the
pure gyroscope for when use is made of the Poisson
bracket angular momentum properties of the s,,,%¢
ie.,

Su6Spy Ty Ty = 0. 8)

MSypSap

(suv > S pa

©®)

the Poisson bracket equations of motion: X, =
(x,, H); 7, = (m,, H); and §,, = (s,,, H), are Eqs.

= supaw + Svaaup - Sucavp - sv,,é,w,

¢ J. Frenkel, Z. Physik 37, 243 (1926).

8 S. Shanmugadashan, Can. J. Phys. 31, 1 (1953).

¢ H. A. Kramers, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1957), Sec. 57.
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(2), (3), and (4), respectively. Further, (6) and (9)
yield the additional Poisson bracket relation

To(Xes V) + To(X,, 0,).
(10)

In the next section we see the remarkable extent to
which the classical expressions (1)-(10) find their
operator analog in the quantum theory.

Anticipating the ensuing quantum mechanical
analysis it is of interest to note Corben’s relation
between the rest energy and spin of the classical free
particle. For the case P = 0, Eqs. (3) and (4) have
the solutions?

(U;u Spa') = Upa;m - vaauo' -

s=const, v=R xr,
where §; = }€;,5;, and Q& = —(uc?/s?s, and u is a
constant for given |v|. Thus the particle moves, in a
plane normal to s, in a circle of radius

r = (v[e)s/pe,

with energy
E=pc*=mey = —s- Q.
For this motion, the invariant, intrinsic spin s, is
related to the observable spin s by
So = [%(saﬁsaﬁ)]% = S/)/,

and therefore the energy is given by

E = mc?(s,/5). (11)
Thus the energy in the momentum rest frame,
properly called the rest energy, varies inversely with
the magnitude of the observable spin. Classically then,
a continuum of states with increasing spin and
decreasing rest energy is predicted, a consequence

which finds its counterpart in the quantum theory
presented in the next section.

III. THE MAJORANA REPRESENTATION

The basis of this relativistic quantum description of
a charged, spinning, point particle is the first-order
wave equation

(icy,m, + mc®y = 0, (12)

where 7, = —ikd, — e/cA,, and the y, are the
infinite dimensional matrices specified by Majorana.l
The spin operators

Yuv = ('})n‘yv - Vvyu) (13)
are the generators of the homogeneous Lorentz group
and therefore satisfy the general, representation-
invariant, commutation relations
[va, ypa] = Yup(sva + yvaaup - yuaavp - vaa;wa (14)

[Va ’ ;yuv] = —ypava + yvaua . (15)

7 A. Papapetrou, Praktika Acad. d’Thenes 14, 540 (1939).
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While (14) is the operator counterpart of (9), (15)
differs from (10), since the operators for position and
velocity in the first-order quantum theory necessarily

commute.
As a consequence of (13), (14), and (15) it can be

seen that
[Va s YuvVuy — 2Vu7u] = 0’ (16)

therefore the combination y,,y,, — 2y,p, must be
treated as a ¢ number, a result which is also repre-
sentation invariant and is true of finite as well as
infinite dimensional representations. The Majorana
representation implies the further restriction that
YV 18 separately a ¢ number, ie.,

Vo> PPl = 0, (17)

as a consequence of which
YuVuo + Vup¥u = 0, (18)
es vuvul = 0. (19)

Equation (18) represents the operator analog of the
supplementary condition (1), and (19) implies that in
this representation y,y, is also to be treated as a ¢
number. Thus we begin to see the reflection of the
classical theory of the pure gyroscope in the quantum
theory through the Majorana representation. Relation
(17) implies the constancy of y,,y,, which, as we saw,
has as its classical counterpart the constancy of
8,5, . Likewise the ¢ number character of y,y, is
necessary if we expect to refiect the classical relativistic
definition, v, = —c% In the case of the finite
dimensional representations, only the Dirac matrices
for spin } display these characteristics, whereas
turning to the Majorana representation provides a
correspondence valid for arbitrary spin.

Further instructive properties of the Majorana
representation are derivable from the relation

Yup? ov + YvoVou = —(yuyv + yv)’u) + ZYpypapva (20)

which is itself a consequence of (18). Let us introduce
the particular ¢ numbers, y,y, = —a, and y,,y,, = b.
If we multiply (20) once on the left and once on the
right by 7,,, add the two expressions, and again use
(18), we obtain

YvoPupVov + PupPowd + VupVov + VooV ou)Vve
= —1/b(4a + D(VupVap)Vus» (1)

which, modulo numerical coefficients, is the operator
analog of the classical identity (5). The explicit relation
between the ¢ numbers a and b may be obtained by
multiplying (20) by é,,, giving b = 3a.

To illustrate the dynamical correspondence between
the classical theory of Sec. II and the quantum theory
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in the Majorana representation, we consider H =
icy,m, + mc? to be the proper time Hamiltonian. The
operator dynamics are then given by

m, = ifh[m,, H] = e[cF,(icy,), (22)
(h/l)yuv = [ypvs H] = Wu(icyv) - Wv(fc)’u), (23)

which clearly represent the operator counterparts of the
classical equations (3) and (4). Once again Eqgs. (22)
and (23) are a consequence of the general group
properties (14) and (15), and are therefore repre-
sentation-invariant. When the bilinear associations®

iC(Vy) = U;u h/l<7}uv> = suv! (24)

are made, the Eqgs. (22) and (23) yield (3) and (4).

If we now seek the quantum counterpart of (6) we
are again forced to the Majorana representation. In
order to separate the orbital and spin contributions
to the current, we express the current as'®

—i (.
Y =— fw(w,, + vy )mpdix,  (25)
2me

where surface terms have been neglected. Using (20)
we have

. 1 (.
ic{y,) = py. f B2V e¥emu = VuaVap + VooVeu) T 9 d'x.
(26)

Making use of (24) we may write (26) in terms of the
classical variables as

—mv, = (am,[m) + (bS,,5,,7,/2ms,55,5), (27)

which, modulo the coefficients a and b, is the same as
(6). This relation (27) implies that the classical
Hamiltonian constructed from the quantum theory,
in the Majorana representation, is

2
am,m, mc
2m 2

8 M. E. Rose, Relativistic Electron Theory (John Wiley & Sons,
Inc., New York), Sec. 11.

9 K. Rafanelli and R. Schiller, Phys. Rev. 135, B279 (1964).

10 W, Gordon, Z. Physik 50, 5630 (1927).

H= Suspmaty o (a8)

4ms,ps,,,

KENNETH RAFANELLI

The Hamiltonian (28) and the associated relation (27)
yield the Poisson bracket equations of motion (3)
and (4) independent of the values of g and b.

Further, with regard to the discussion on the
dependence of classical rest energy on spin, the wave
equation (12), for the free particle in the frame
defined by P, = (0, iE/c) becomes

29)
As shown by Majorana, y, is diagonal and has the
eigenvalue (j+ 1), where j is the spin of the state

considered. Therefore the rest energy of the given
state is

vaEy = mcty.

E =mc¥(j+ }). (30)

Thus, to mirror the classical result (11), the quantum
theory predicts a discrete set of states whose rest
energy decreases with increasing spin.

IV. CONCLUSION

The preceding analysis shows a striking corre-
spondence between the classical and quantum the-
ories of spinning particles when the classical theory
describes a pure gyroscope and the quantum theory
is couched in the language of Majorana’s infinite
dimensional unitary representation of the Lorentz
group.

The operator properties, essential to a meaningful
reflection of the properties of the classical variables,
find expression only for spin 4 when the finite dimen-
sional representations are considered. Only when we
turn to the infinite dimensional matrices of Majorana
can the correspondence be extended to the case of
arbitrary spin.
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A general equation for the electromagnetic current J of a superconductor responding to a frequency-
dependent external electromagnetic field and under the influence of impurity scattering and temperature
has been derived in momentum space using the Green’s function method. This general equation can be
regarded in two ways. (a) It is the Fourier transform, from coordinate space to momentum space, of the
equation of Mattis and Bardeen [D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958), Eq. (3.3)}.
(b) It summarizes, in one equation, the previous works of Abrikosov et al. on the electromagnetic
behavior of superconductors. In addition to these general properties, this equation also shows, in partic-
ular, that for a superconducting alloy with a few percent of impurity concentration, the kernel for the
current is the same as that of a Pippard pure superconductor, with vk, where v is the Fermi velocity
and k is the momentum exchange during collision replaced by ., the transport collision time, valid
for all temperatures up to T, the transition temperature. Expressions of the current in closed form for
both superconducting alloys and normal metal with impurity are also given for vk ~ 1/r.

I. INTRODUCTION

E discuss here the derivation of a general formula

for the electromagnetic current J of a metal
including the following five parameters: gap A,
collision time =, temperature T, frequency of external
field w, and vk, where v is the Fermi velocity of the
electrons in the metal and & is the momentum exchange
during collision. A superconductor is known as the
London type if vk is small, and is known as the
Pippard type if vk is large. In a normal metal, for
vk small, the phenomenon is known as the normal
skin effect, while for vk large, it is known as the
anomalous skin effect. Already a good number of
results have been derived by Abrikosov et al.1~* using
the Green’s function method. However, all their
results include four or less of the five parameters
mentioned above, while we would like to derive an
equation which includes all the five parameters, thus
summarizing all their previous work in one equation.
From another point of view, the equation that we
wish to derive can also be regarded as the Fourier
transform, from coordinate space to momentum
space, of the equation of Mattis and Bardeen.’
Needless to say, because of the complexity of the

1 A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fiz.
35, 1558 (1958); 36, 319 (1959) [English transl.: Soviet Phys.—JETP
8, 1090 (1959); 9, 220 (1959)].

2 A. A. Akrikosov, L. P. Gorkov, and I. M. Khalatnikov, Zh.
Eksperim. i Teor. Fiz. 35, 265 (1958); 37, 187 (1959) [English transl.:
Soviet Phys.—JETP 8, 182 (1959); 10, 132 (1960)].

3 A. A. Abrikosov, L. P. Gorkov, and 1. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).

4], M. Khalatnikov and A. A. Abrikosov, Advan. Phys. 8, 45
(1959).

8 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

parameters involved and the problem of analyticity
of the equation, it is impossible to obtain the Fourier
transform directly from the equation of Mattis and
Bardeen. We must therefore look for a solution to
the problem at a much earlier stage, and we start with
the derivation of the current J from the well-known
“Kubo formula.” ¢

As far as the problem of analyticity is concerned,
the method we are going to use resembles closely that
of Ambegaokar and Langer,” and is almost the same
as indicated by Evans and Rickayzen® in another
context, in the discussion of the Meissner effect. It is
the following. We notice that the Green’s function
used by Abrikosov is actually G(w + id), which has
singularities in the upper half-plane, with complicated
analyticity problems when impurity scattering is
present. If, however, one works with G(w), without id,
then one finds that in the complex w plane it has only
cuts on the real axis, but is analytic everywhere else.
Then using a theorem by Baym and Mermin,® we are
able to obtain the spectral weight function A(w) by
analytic continuation. In most cases, the final ex-
pression for current that we obtain can be integrated
analytically, without having to have recourse to
numerical computation, as is necessary in the case of
Mattis and Bardeen’s expression, calculated by
Miller.?®

8 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

7 V. Ambegaokar, Brandeis Lectures, Vol. 2, Astrophysics and the
Many-Body Problem (W. A. Benjamin, Inc., New York, 1962), pp.
323-438.

8 A. B. Evans and G. Rickayzen, Ann. Phys. (New York) 33,
275 (1965).

® G. Baym and M. Mermin, J. Math. Phys. 2, 232 (1961).

10 p, B. Miller, Phys. Rev. 118, 928 (1960).
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2. DERIVATION OF THE GENERAL
FORMULA

We start with the current—current correlation
function. Following Rickayzen!* and Ambegaokar,’
we have

j=jp+jD’

where j;, = —Ne®*A/m, and

i1 = [ dt, il 1, 5 1 A 8 ()
and w
{j(X: tx), j(y’ tv)] Ef > (X3 Y, tx - tv)
—'f<(X, Y, tu — t:c)' (2)

Since the current j is a physical quantity, it is
absolutely convergent, and can be continued into
the complex ¢ plane;

i t plane, B = 1/kgT.

I I

mio

We continue f, into the lower regions III and 1V,
J< into the upper regions I and II. The periodicity
condition for £, and £ is

few) = e~wﬂf>(w)-
$(w) = f-(w)(1 — &),
We have

f>(x: Y, ta - ty) = ("_ie/ zm)z(vz - Vw’)(vv - Vv’)
X T [QPT(",: t«;')?’("’ fx)’PT(Y', (s tv)]-

The inequality in time ordering here depends on
how ¢ is extended from real to complex values. If one
uses the “restricted time region” as done by
Ambegaokar, the inequality refers to the negative
imaginary part of ¢. If one uses the regions in II and
IV (e.g., Baym), the inequality refers to the real part
of ¢. In any case,

Define
&)

f>(X, Y, by — tu) = (-—ie/2m)2(Vm - Vx')(vv - vu’)
X [=8(x — y)8(y — x) + Fx' — y)F(y ~ 0},
4

where G and & are the well-known Green’s functions

11 G. Rickayzen, Lecture Notes on the Many-Body Problem, from
the First Bergen International School of Physics (W. A. Benjamin,
Inc., New York, 1962); Theory of Superconductivity (John Wiley &
Sons, Inc., New York, 1965).

M. K. F.
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of a superconductor originally defined by Gorkov.?
We now take the Fourier series components, and write

i v (fam
Lyt —t)= EE e mlts t”)F>(1'ms X, ¥),
m

where
Vo = 2eemf(—if), m=0, +1, £2,-+-.
Thus,

—iff
F>(vm’ X,y) = o %y, 0, —t)
X ettt gt — 1), (5)

Similarly, writing out only the time components, we
define

S(t, — 1) = 5 3 8L,
where &
I=0,%x1, 42+, {=p+ @+ Hr/(—ip),
8¢) = [ e, - 1) de - 1)
From (4) and (5),
Faom, ) = (= 22) (V. = V¥, — V)=
x [ = 2606y, 008, X, 4+ %)
+ I D0 k) |
©
Next we define the spectral weight function 4 such that
dw 4/x, Y, W)
20§ —w
If we continue from discrete {, to continuous {, wehave

8(x, ¥, L) = f ™

(8)

It has been shown by Baym and Mermin® that the
continuation from (7) to (8) is unique if G(x,y’, {)
has only cuts on the real { axis, but is analytic else-
where. Then from (8) we obtain

A(w) = i[G(w + id) — G(w — id)]. ®

Since the F'F term is entirely similar to the GG term,
we write A(w) to include both 4, and 4,. [cf. Eq.
(16).]

We now transform the summation in (6) into a
contour integral, and then deform the contour on the

iz L. P. Gorkov, Zh, Eksperim. i Teor. Fiz. 34,735 (1958) [English
transl.: Soviet Phys,—JETP 7, 505 (1958)].
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two sides in the negative sense. Thus,

Fa(v,, %, y) = (_ 2—’;—‘;)2%,-(% — V)V, - V,)

dw, d , p
%?A(x—y,wl)A(y—x,wa

x [tanh (w,/2T) — tanh (w,/2T)]

w,— w7,
From (3) and (5) we have, omitting x and y,

F>(v,,.)=if°° _dw) dw

—00 ’Vm—WZ‘IT

(10)

(11)
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Combining (10) and (11), we have
ie \?
¢(X, y. W) = (_ —) %(Vo: - Vz')
2m
dw; dw
x(V, —V,)| —1+=—=2,
@ ”)f @m)*
ARx — ¥, wA(Y — X', wp)2md(w + wy — wy)
X [tanh (wy/2T) — tanh (w,/27)]. (12)

We now take the Fourier transform of (5) in ¢ and x,
and get

daP dwy dw, A,(p + 3k, w)A,(p — 3Kk, wy) — Ap + 3k, wpA(p — 1k, wp)

: I
iaCkwo) = = f pp- Al wo B A

where a factor 2 has come from summing over spin,
and 4, and A4, are to be obtained from (7), (8),
and (9). The thermal Green’s functions G and F are
the same as Abrikosov and Gorkov’s, where we have
changed the sign of our § to agree with their G. Since
the current depends only on the product of two G’s,
it does not change (13). F is a matrix proportional to

0 -1
I= .
1 0
Since ff = —1, we can treat [ as i, thus obtaining the
time-dependent G and F in complete agreement with
Gorkov’s G and F.

Equation (13) is the starting point for the calculation
of current. Following Abrikosov and Gorkov, we have

~(iw, + E) t A
Gg=—7——"1—", Fo=—7-——. (14
CTWEHER4 AT T W4 ER4A? (14

Putting iw,, — w, we have
w+ E
G°=w2_E2_A2
—AZ —iA (15

Fy = =
O T W E2—A? wl_ E?-— A%

Or, writing in Nambu’s form,

G,
( ) = (w — Eo; + Aoy 'U,

G,
0, Fg-

where

and

Wg — Wy + wy + id
% [tanh (w,/2T) — tanh (wy/2T)], (13)

At this stage the effect of impurity scattering must
be taken into consideration. The problem was first
solved by Edwards*® for normal metals, and has been
well presented by Rickayzen' in the case of super-
conductors, We refer to his article for further details,
The Green’s function G, of a superconductor with
impurities is obtained from the Green’s function
of a pure superconductor G, through the Dyson
equation.
The Dyson equation is

- . G
Gn = (GO—}I - E)“lUs Gn = (FT),

where
4k’

2W®=n] o5

= (W + Acy)y + o35x’;
% is the renormalization of energy, and can be
absorbed in E;

3G, n(k’, W)oy [u(k — K')*

x=-—5'17;' EE;—_—E)——W=0 for w? > A?
_ -1
- 2‘r(A2 — w2)§
for A2> w?
Thus,

- (w —Ag))(1 — ) + Eo,

Wil = )" = A1 — ) — E*
For w? > A? the denominator is w? — (A2 4 E?),
For w? < AZ the denominator is w?;? — (A%y? + E?),
where

n

1
27( A2 — WZ)Q

13 §. F. Edwards, Phil. Mag. 3, 1020 (1958).

7]=1+ = real.
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In both cases, G,(w) has only a cut on the real axis.
Thus by the theorem of Baym and Mermin, the
continuation is unique, and G,(w) is the required

Green’s function.
From G,(w), we obtain A(w);

A
Aw) = ( ”) =[G, (w + i6) — G (w — i8)]i
Af
G i) — G(w — id
=(~(W+') o '))i, (16)
Flow + i8) — Fl(w — i9)
Cw + i8) = 2+ E
(w + id) W — B — A W
i . —ilAn,
Flw+i0) = wni — E* 4+ A%}

where

ny =14 i27(w? — A%} for w? > A2,
=1+ 1/27(A% — wd)} for A2 > w2

2 =3}
i) = — X 1A [ dw (tanh 2+ _ tanh &){{1
me Atdu, 2T

2T
_2i/Ttr

K. F.

WONG

E
Glw — i) = —21=F ,
(w — id) W772~ — E2 — A2ni (18)
Flow —i6) = — il

Wh — E* — g’
where
=1 —if2r(w? — A%}, for w?> A2,
=1+ 1/27(A% — w}, for A2 > w2

Two cases can now be distinguished.

(1) The extreme anomalous skin effect region, where
k is very large. In this case 1/r K vk, and we can
neglect 1/7. Then the effect of impurity disappears and
we can treat the superconductor as a pure metal.
Obviously one should then get the results of Abrikosov
and of Mattis and Bardeen. We show this explicitly
afterwards.

(2) The normal skin effect region, where vk <« 1/7.
We can then neglect k. This is the result we are
immediately interested in. Substituting (17) and (18)
in (16), and averaging over the Green’s function lines
by summing over the ladder diagrams, we obtain
after some calculation

_ wow_ + A? ]
(w2 — AW — A%}

— 11
“IoE — 8O £ o2 — AP + 1, [ T

—2ifr,,

ot — T — o - TP 1)

wow_ + A® :I
_ AZ)%‘(wi —- A2)'&
} A+éwodw canh P (w,w_ + A%
atuo 2T (w2 — AB¥A? — w2)ti

2i[(A? — wii(1/7,)]

y { ~2i(1/ry) +(8° — w2)l] 1)
W2 =AY + [(A — w2t + 1r, P (W2 — AY) + [(A% — W)t — 1r, B
where W, <27, W,.= W+ iW,, W_=W — }W,,
1 nmp, 2 1 nmp,
_—= — /] 1-— 0 dQ, - = 6 2 Qs
— =0k f WO 1 = cos0)d0, - ="2Ee f PO
and
Né* © w w
(W) = — ~—— 1A dw(tanh = — taph 2=
i) me YA a+buo W( altlor T8 2T)
o [1 _ wow_ + A? :I —2iz,, _ [1 + wow_ + A?
w2 — AW — AR — A 4 (WP — AYIP 4 17, (w? — A2 — Az)*}
—"; %‘wo—A 2
X = 3 P ] + —dw tanh .&L_[ waw. + A ]
(W2 — A — (w2 — AR 4 1% Jatu, 2TL(w?2 — ADw2 — A%}
2ijr,, 2ilr, dugra w
X + r + —dwtanh —
{[(wi CA W — AN+ 1 [wE — AN — (- A 4 1/73,} baea

2i[(A% — wi)t — (1/7,)]

x { —2i(1/r,;) + (A* — w)!]

Wh— AT (AT — WD 1fr, P wh - A% 4 (AT — W) — 1/7,,12} [—(wi

(for wy > 24).

wow_ + A?
— A%yt — A%*i]
(20)
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From (19) and (20) we obtain, for 1/7,. > A,

i(wo) = (Ne*Ajmem) , A(wo) @(wo), 21
where Q(w,) is the same as Eq. (6.11) of Khalatnikov
and Abrikosov,? i.e., the kernel of a Pippard pure
metal. The only change, apart from a numerical
factor of +%, is to replace 1/vk in the Pippard limit
by 7., in the alloy case (where v is the Fermi velocity
and k is the momentum exchange).

The interpretation of this result is quite obvious.
Since 1/vk ~ &[v, where & is the coherence length,
while 7, ~ Ifv, where / is the mean free path, the
result means that in a superconducting alloy, the
mean free path takes over the role of coherence
distance. The present result is valid for all tempera-
tures up to T, while the same conclusion was already
contained in Abrikosov’s work at zero temperature.

We have so far mentioned two extreme regions, the
anomalous skin effect region and the normal skin
effect region. There is yet a third region which is the
intermediate region, where vk ~ 1/r. Starting from
(13), we have obtained the current in this region for
both superconductors and normal metal. The final
results are

Superconductors:
For wy < 2A,
vk~1jr, w, and TKvk; (QAwy)} < vk.

Atdw 2
i, w) = | " do» tanh %BN ¢ Ak, wo):l
beo

mc
—w,w_ — A?

X 2 _ A2 b A2 o 2 1

2(wl )*( wZ)

—1 1 1
X [vzsz + (ﬁ + vsk”-r) arctan vkr].

(22)
Normal metal:
vk ~ 1/
3Ne? w
i(k, wy) = — In cosh —%
ik, wo) e T
2 2% ;
< {—Lln [1 + (W, + vk)sz] _ 1
vk 1 4+ (wg — vk)*r vk
X [arctan (wyr + vk7) — arctan (wgr — vk7)]) Ak, Wg).
(23)

We have not averaged over the Green’s function
lines to change = into 7,. However, as long as
vk < F,, the Fermi energy, it scems that 7, should
take the place of 7. At any rate, it is safe to leaye 7 as
a parameter. Equations (22) and (23) then give the
current as a function of the other parameters A, w,,
T, and vk.

Finally, we show that our formula reproduces all
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the previous results of Abrikosov et al. when one or
more of the parameters is put to the limit.

@T=0.

From (19), we have, for wy < 2A, 1/7,, > A,

A+%w°

. Ne?
iowe) = — X Awo)rs f
mc 3

A—Zwy
2
x o +4 . (24)
(] — AYHA — w2yt
This is the equation from which Abrikosov et all
calculated the current for superconducting alloys at

zero temperature.
(b) Pure metal. 7 = co. We have

f [A,(w) Ay (wy) — A w) A, ()] deoy dao,

X 1 (tanh L tanh 22)
Wo — Wy — w, + i0 2T 2T

2
= -772(1 — l—zi‘—E—‘—_t—A—) (tanh % + tanh —6;)

€€, 2T
S i
e, e +wptid e —e 4 w,—id
2
2T 2T

€ €,

dw

1 1
p + ,
(e_,_-e_+w0+i(5 e+—e_—w0-—i6)
where (25)
e =(EL + A%, o =(EL+ A%
From(25) we obtain a current whichis the same as Eq.
(11) of Ref. 2(a) or Eq. (6.5) of Ref. 4. This equation
can be used for both Pippard and London regions.
(c) Static field. w = 0.
From (19) we get, for 1/7,, > A,

2 A+tw,
i= - Ne A'r,,f *de tanh
A 2T

me
y wiw — wp) + A®
(w* — ADHA® — (w — wo'lt
for wy — 0. Write w' = w — A,

2 w, ,
j=- EﬂA"nf "aw’ tanh 21
me 0 2T
2A%
X - .
(2Aw )i[z A(Wo - W')]
2 1
=X A"'trf dt tanh AA ___1___§
é . (Where t= w'lwo)
= —oAA tanh—A—f 2sin  cos 0 df
2T Jo sin 6 cos 6
(where t = sin® )
= —oA[(tanh (A/2T)]7A.

This agrees with the result of Abrikosov et al.?
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SUMMARY

(1) We have obtained the general expression for
the electromagnetic current j of a superconductor
with impurity scattering at any temperature up to T,
i.e., Eq. (13), as a function of input frequency w of
the external electromagnetic field A and momentum
exchange during collision k.

(2) This equation is the Fourier transform of
Mattis and Bardeen’s* Eq. (3.3), and summarizes in
one equation all the previous work of Abrikosov and
his co-workers on the electromagnetic behavior of
superconductors. An explicit derivation of all their
results from Eq. (13) has been given.

M. K. F. WONG

(3) We have found, in particular, a quantitative
result in Eq. (21), which can be clearly interpreted as
meaning that for most of superconducting alloys,
as long as the impurity concentration is over a few
percent, the mean free path / takes over the role of
coherence distance £, regardless of temperature. In
addition, we have also given expressions for the current
in closed form for vk ~ 1/ [Egs. (22) and (23)].
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principle itself is given.

1. INTRODUCTION

AFUNDAMENTAL problem of statistical physics
is to obtain simplified descriptions of complex
systems. The formulas of equilibrium statistical
mechanics and the equations of nonequilibrium theory
have proven remarkably successful in practice, but
when one examines their derivations one is con-
fronted by a bewildering multitude of poorly justified
methods. In a discipline which has a long tradition of
paradoxes and controversies, the real question is why
does it work so well? A great deal of research has
been directed towards understanding the foundations
of equilibrium theory. It is here that ergodic theory

* This research was supported by the National Science Founda-
tion under Grant No. GP 5020.

had its origin. But without additional unjustified
assumptions, ergodic theory fails to explain the basic
formulas. The state of affairs in nonequilibrium
theory is even worse.

Confronted by the absence of any satisfactory
derivation of fundamental formulas, one might be
prepared, tentatively, to accept an approach which at
least has the virtue of simplicity. For equilibrium
theory, one such approach is the derivation of the
canonical distribution formula by maximizing an
appropriate entropy functional subject to prescribed
average energy. This method was described very
early by Gibbs! and has more recently been discussed

17, W.. Gibbs, Elementary Principles in Statistical Mechanics
(Yale University Press, New Haven, Connecticut, 1902; Dover
Publications, Inc., New York, 1960).
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by Jaynes?* who has emphasized its interesting
connections with information theory. It is natural to
ask if this method can be extended to nonequi-
librium statistical mechanics.

Any such extension must obviously involve the
dynamics of the system underlying the statistical
description. We have found that it is possible to
combine the process of maximizing an appropriate
entropy functional with the *“‘solution operator” of the
Liouville equation to obtain a “general principle”
which yields many of the equations of statistical
mechanics, both equilibrium and nonequilibrium.
The idea is a fairly obvious one and this principle, or
a very similar principle, has been employed in special
cases by other authors.>~® But apparently the gener-
ality of the principle has not been recognized earlier.
Our main object in this paper is to demonstrate its
generality—and its simplicity—by deriving a variety
of basic results. It seems likely that other well-known
results can be, or perhaps already have been, derived
by this method. We emphasize that no a priori
justification of the general principle is given.

No new equations are derived here, but it is clear
that for almost any function or set of functions one
wishes to choose to describe a many-body system, the
principle will yield equations of motion for these
functions. Thus, for example, there are no “closure”
problems. Of course, it is not guaranteed that these
equations will be sufficiently simple to be useful and it
remains to be seen whether they will yield predictions
that agree with experiment.

Before stating the principle, we must explain what
we mean by a ‘“‘simplified description.” A good
example is the “one-particle distribution function”
of a many-body system. We call such a function a
“state function.” With each state function, we associate
a “complete description,” consisting of an equation of
motion and an entropy functional. Then for any
simpler state function (related by a linear trans-
formation to the original one), we present (Sec. 3) a
simple rule which yields a complete description
(equation of motion plus entropy functional) for the
new state function. The process can then be repeated.

2 E. T. Jaynes, Phys. Rev. 106, 620 (1957).

3 E. T. Jaynes, Phys. Rev. 108, 171 (1957).

4 E. T. Jaynes, Probability Theory in Science and Engineering,
Colloquium Lectures in Pure and Applied Science, No. 4, Socony
Mobil Oil Company (1958).

5 L. S. Hall, Lawrence Radiation Laboratory, University of
California, Report UCRL-6751 (1962).

¢ A. M. Kogan, J. Appl. Math. Mech. 29, 130 (1965).

7 R. Kubo, Lectures in Theoretical Physics, W. E. Brittin and L.
G. Dunham, Eds. (Interscience Publishers, Inc., New York, 1959),
Vol. I, pp. 120-203.

8 J. L. Lebowitz, H. L. Frisch, and E. Helfand, Phys. Fluids 3, 1
(1960).
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Thus, beginning with Liouville’s equation of motion
for the n-particle function, one can derive a wide
variety of descriptions at various levels of complexity.
(Because of this possibility of multiple levels of
description, we avoid the terms ‘“‘microscopic” and
“macroscopic.”) For each description the principle
yields a new entropy functional. This explains the
appearance of many definitions of entropy in physics
and clarifies the relations among them. The origin of
“irreversibility” in the equations as derived by the
principle is also very easily seen. All of the work
presented here is based on classical statistical
mechanics, but it seems likely that there would be no
serious obstacle to extending it to the quantum
mechanical case.

In Sec. 4, we apply the principle which is stated in
Sec. 3 to the one-particle distribution function. The
resulting equation of motion is the Vlasov equation.
In order to obtain the Boltzmann equation (Sec. 6), it
is necessary to generalize the principle slightly. This is
done in Sec. 5. Then the principle of Sec. 3 appears as
a special case. In Secs. 7 and 8 we use the principle to
derive hydrodynamic equations from the Boltzmann
equation. The equations of Sec. 8 generalize those of
Grad’s “thirteen moment approximation.” They
reduce to Grad’s equations when the pressure tensor
is nearly scalar. For completeness, we repeat Gibbs’
derivation of the canonical distribution function in
Sec. 9, and in Sec. 10 we derive the equations of
irreversible statistical mechanics and the Onsager
relations by means of the general principle. Section 2
contains a brief discussion of the Liouville equation
and related matters. By including this section, we
facilitate the later derivations and provide a treatment
which is almost self-contained.

2. CLASSICAL STATISTICAL MECHANICS:
PRELIMINARIES

A conservative classical mechanical system with
r degrees of freedom is characterized by its Hamil-
tonian H(z), wherez = (q,p) = (g1, " " s 4, P1,""*s Pr)s
the g, are generalized coordinates, and the p, the
conjugate momenta, The state of the system at time
t is determined by the point z(¢) in 2r-dimensional
“phase space” which moves on a trajectory determined
by solving Hamilton’s equations

g; = OH|dp,, p,= —0H|dq;;
"= dfdt.

Under suitable conditions on H, the solution z(¢) =
[g(9), p(D], corresponding to given initial conditions

2(0), is uniquely determined. Therefore, in principle,
there exists a one-parameter family of “solution

@1

i=1,,r;
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operators” S, such that
() = §,2(0), S, =1, (2.2)

In practice the. solution, and hence the solution
operator, cannot be computed for any but the simplest
systems. Any physical observable corresponds to a
“phase function” (¢, z) = (¢, q, p). The value
ylt, z(1)] of y corresponding to a state z(f) clearly
satisfies

S Sy = Se-

d % 00, O dplH
FTAGY +(vi H) b dq,0p;, 9p,dq;
(2.3)
In particular,
(d/d)H[z(1)} = 0, (2.4)

i.e., H(s;z) is independent of ¢.
It is convenient to introduce a momentum reversal
operator R defined simply by

Rz =R(g,p) = (¢, —p). 2.5

For any solution g(#), p(f) of (1), it is easy to see that
g*() = g(—1), p*(1) = —p(—1) is also a solution of
(2.1) provided the Hamiltonian is an even function of
the momenta, i.e.,

H(®Rz) = H(z2). (2.6)

It follows that

RS_;[9(0), p(O)] = [9(—1), —p(—1)]
= [g*(), p*(O] = S;lg*(0), p*(0)]
= 5,[9(0), —p(0)] = S, R[4(0), p(O)]. (2.7)

Since the initial conditions [¢(0), p(0)] in (2.7) are
arbitrary, we see from (2.7) and (2.5) that

RS_, = SR, R2=1. (2.8)

This equation expresses the time-reversibility of
Hamilton’s equations and hence of the Liouville
equation which we shall introduce shortly.

In statistical mechanics, we introduce a probability
distribution P, in phase space and a corresponding
probability density w(t, z) such that for every subset 4,

P(A) =f w(t, z) dz 2.9)
4
is the probability that at time ¢, z is in 4. The expected
value of the observable corresponding to the phase
function ¢ is now

(@) = f gw dz; (2.10)

P, must satisfy the obvious requirement of “conser-
vation of probability,”

P(S,A) = PyA). (2.11)

ROBERT M. LEWIS

It can easily be shown®1? that the volume element dz
in phase space is preserved by the solution operators
S,, ie.,

d(S,z) = dz. (2.12)

We see from (2.11) and (2.12) that for any set 4
f w(t, z)dz =f w(0, z) dz =f w(0, S_,z) dz.
8.4 4 8.4
(2.13)

If we define the solution operator applied to a function
by

S.g(z) = g(S:2), (2.14)
it follows from (2.13) that
w(t, z) = S_w(0, z). (2.15)

Since w(t, z) = w(0, S_,z), we see from (2.3) that
ow/ot = (H; w). (2.16)

This is the Liouville equation and (2.15) is its formal

solution.
From (2.12) we find that for any function f(z)

f f(Sg2)dz = f £(2) de.

In particular, if we introduce the basic entropy
Sfunctional

S[w] = —k f w(t, 2) log w(t, 2) dz,  (2.18)

(2.17)

we see from Egs. (2.15), (2.14), and (2.17) that S is
independent of ¢, i.e.,
(d/dr)S[w] = 0.

In (2.18) k is Boltzmann’s constant.

For the most part we restrict our considerations to
a system of »n identical monatomic particles of mass m.
If the jth particle has Cartesian coordinates q; =
(9}, 42,95 and momentum p; = (pj, p?, p}), we set
z; = q;, p; and take the Hamiltonian to be of the form

(2.19)

Hn(z) = Hn(zl9 T, Zn)
- 1
=> =pi+ 3 ola;,~aql). (220
j=12m 1<i<i<n

Here ¢(r) is the interparticle potential function. The
solution operator corresponding to (2.20) is denoted
by S{™. We consider particles confined to a region D
of volume V. Then (2.20) should include an additional
term D", uq(q;), where ug(q) is zero inside D and
rapidly approaches infinity at the boundary. Since we

® H. Grad, Kinetic Theory and Statistical Mechanics, New York

University, lecture notes (1950).
19 1. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience

Publishers, Inc., New York, 1962).
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let » and D become infinite in such a way that the
specific volume v = ¥V/n has a finite limit, we omit the
additional terms in (2.20).

In an attempt to obtain a simplified description, one
frequently introduces the “s-particle functions”

fs(t’ Z1, " ’Zs) =fW(t, 215" zn) dzs—}—l‘ v dznb
s=1,2,---. (2.21)

Then f,, = w. For identical particles, w is a symmetric
function of z,, - « *, z, and is normalized by

jwdzl-'-dzn=1.

It follows that f; is a symmetric function of z;, - - -, z,
and

(2.22)

ffsdzl---dzs=1.

For some purposes, it is more convenient to use the
s-particle functions

Fs(ta 23, "

(2.23)

<, z) = Vf,. (2.24)

In the limit, n — oo, ¥ — o, ¥/n = v, it is possible
to obtain an expansion for F (1, z;, * * -, z,) in inverse
powers of v in terms of the initial values
F,(0, z;, - - -, z,) of the m-particle functions and the
solution operators S{™ for small values of m > s. In
the simplest case, s = 1 and the leading terms of the
expansion are given by!!

1
Filt, z) = SUF0, 2) + f [S®FA0, 23, 2;)

— Fy0, Sz, , SWz))] dz, + 0(1%5)' (2.25)

Since initial data can be specified at an arbitrary time,
a more general form of the expansion is

Fy(t + 7, 21) = SUFy(t, z,) + f [SPFy(t, z,, z,)
v

— Fy(t, S%z,, SDz,)] dz, + 0(12). (2.26)
v

The remainder term includes the solution operators
for three and more particles. Since the first two terms
involve at most two particle interactions, it is clear
that for given v the remainder cannot be neglected for
all 7. Rather, one must impose the restriction [see
Ref. 11(b)]
T Kty = v[rgk,. -(2.27)
11 See (a) R. M. Lewis, J. Math. Phys. 2, 222 (1961), Egs. (41),
(39), (42). Equation (8.5) of (b) N. N. Bogoliubov, Studies in Statis-
tical Mechanics, J. DeBoer and G. E. Uhlenbeck, Eds. (North-

Holland Publishing Company, Amsterdam, 1962), Vol. I, pp. 5-118
can also be transformed to yield (25).
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Here ry is the effective range of the interparticle
potential, &, is the average particle speed, and ¢, is the
average time between collisions. The expansion (2.26)
is useful in our derivation of the Boltzmann equation
in Sec. 6.

3. THE SPECIAL PRINCIPLE

A major goal of statistical mechanics is to obtain
simplified descriptions of a complex system. An
important example is given by

£ty z) = f w(t, 2) dzy -+ - dz, (.1)

which js a function of seven variables whereas w is a
function of 6n 4 1 variables. The problem is to
obtain an equation of motion for f, from the Liouville
equation for w. In this case we proceed as follows:
For given f,(¢, z;), many nonnegative symmetric nor-
malized functions w(t, z,) can be found which satisfy
(3.1). Of these functions, we choose the unique w which
maximizes the basic entropy functional (2.18). We
denote this function by w(f;; z) or simply w[f;] since
it depends on the functionf; . (Thus w[ f;]is a functional
of f; and a function of z.) By construction it satisfies
(3.1, i.e.,

fltsz) = f wifldzy - dz,.  (3.2)
We now assume that

9 f = (wifldzy - dz (3.3)

P 1 _th f1 Zg ns .

where w; is given by the Liouville equation (2.16).
Thus,

o

% f H;wlfiD dzy- - dz,,  (34)

ot
which is the required equation of motion for f;. It is
important to note that w[f,] provides us not only with
the equation of motion (3.4) but also a new entropy
functional S;[f;] defined by

SilA) = max S[w] = S[wlfll.

In Sec. 4 we actually compute w[f;] and analyze the
resulting Eq. (3.4). Before doing so let us abstract
from what we have done in order to obtain a principle.

We call a function such as w(t, z) or fi(1, z;), which
describes the state of a statistical mechanical system,
a state function. For a given state function u, we assume
that we have a complete description consisting of an
equation of motion

(3.5)

ou/ot = Mu (3.6)
and an entropy functional,
S = S[u]. 3.7
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Here u is a function of the time ¢ and, in general, of
other variables. In some cases (see Secs. 7, 8, and 10)
u is a vector, i.e., a set of functions. M is an operator,
in general, nonlinear, and S is real valued.

Given the description (3.6 and 3.7) in terms of u, we
introduce a new state function derived from u,

f=Lu (3.8)

Here, L is a linear operator, in general not invertible.1
In order to obtain a complete description in terms
of f, we employ the following special principle: For
given f, let u[f] be the unique'® state function that
maximizes (3.7) subject to (3.8), and possibly other side
conditions such as normalization or symmetry con-
ditions. Then the equation of motion for f is

df/ot = LMulf], 3.9)
and its entropy functional is
Silf1= Slulf1l. (3.10)

Beginning with the basic description in terms of w,
i.e., the Liouville equation and the basic entropy
functional, we may obtain descriptions for a great
variety of derived state functions. Some of these are
examined in succeeding sections. We see that the
resulting equations of motion agree with or generalize
well-known equations that have been obtained earlier
by quite different methods. The established usefulness
of these equations is the main source of confidence in
the validity of our principle. For each description, an
entropy functional arises naturally, defined by (3.10).
This explains the appearance of many different
definitions of entropy in different physical descriptions,
and the relations between them.*

In our statement of the principle, we began with a
complete description (3.6), (3.7) for a state function u.
Since the derived description (3.9), (3.10) for f is
complete we can, of course, repeat the process. If we
introduce a new state function

g==tf, (3.11)

we obtain from (3.9) and (3.10) the complete descrip-
tion for g,
dg/or = LLMu[f[g]], (3.12)

Salg]l = Silf[g]) = STulf[gN]. (3.13)

Here f [g] maximizes (3.10) subject to (3.11). It is quite
natural to require that any principle, such as the one
we have introduced, should be transitive. This means

12 If L were invertible, the description in terms of f would be
equivalent to that in terms of # and no simplification would be
accomplished.

13 We assume that a unique maximum exists.

14 See H. Grad, Commun. Pure Appl. Math. 14, 323 (1961).
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that the description (3.12), (3.13) which we have
obtained in two steps should be the same as the
description we would obtain for

g =CLu (3.14)

in one step by applying the principle to the original
description (3.6), (3.7) for u. In fact if we do that the
result is easily seen to be

og/ot = LLMilg], (3.15)

Sa[g] = Slalg]l, (3.16)

where #[g] maximizes (3.7) subject to (3.14). By
comparing (3.12), (3.13) with (3.15), (3.16) we see that
they agree if and only if

algl = ulf[g]). (3.17)
But
max S[u] = max {max S[u]} = max S[u[f]]
g=LLu g=Lf 7=Lu g=Lr
= S[ulf[g]ll. (3.18)

Therefore u[f[g]] maximizes (3.7) subject to (3.14),
hence (3.17) is satisfied. This establishes the tran-
sitivity of the principle.

In closing this section, we observe a trivial con-
sequence of our principle. Starting with w, we take
L = 1. Then the “derived description” is again given
by the Liouville equation and the basic entropy
functional. In particular, if w is given initially by

w0, 2) = 0(z — zy), (3.19)
then (2.15) yields
w(t, z) = &S_;z — z,) (3.20)
and (2.10) becomes
(@) = 9(S20)- (321

Thus classical statistical mechanics, in terms of the
Liouville equation and classical mechanics, appear
trivially as special cases of our principle.

4. THE VLASOV EQUATION

We apply the principle stated in Sec. 3 to
B = [ dzy - d,.

We first maximize the basic entropy functional (2.18)
subject to (2.22), (4.1) and the condition that w be a
symmetric function of z = (z,," -, z,). This can be
done conveniently by using the method of Lagrange
multipliers. We introduce the functional

J(w, 4, f) = S[w] — ﬂ(fw dz — 1) —ow, %),
4.2)

(4.1)
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where S[w] is given by (2.18) and
0 = [ie| [weydzy- -+ dzy = iz} 2. (49)

The conditions 8J/0f = 0 and dJ/dA(z,) = 0 yield
(2.22) and (4.1). Since w is symmetric, (4.3) can be
rewritten as

Q——E

ni=1

Az)wdz — f Mdz,.  (4.4)

Therefore the condition 8J/éw(z) = 0 yields

—k(1 + logw) — 4.5)

It follows that
w(z) = ¢ I] exp {— 1 z(z,-)},
i=1 h

where ¢ is a constant, and from (4.1) we see that the
maximizing w is

w(z) = wifi] = Ii‘llfl(zi>.

The equation of motion for f; is now given by (3.9)
or equivalently (3.4). Thus,

Btz = [[HE T ) dea e, 49)

If we now insert the Hamiltonian (4.20), then a
straightforward calculation yields the equation

g—13a¢) =0
Ni=1

(4.6)

4.7

D.fy = Clfi], 4.9
where
_ % I L _% :
D.fi = {2 Pl,fl( 1)} a1 g a
(4.10)
Clfil=(n— 1) f (guas iz fiz2)} dz,
~n-n3 [ 2129 2 L2

Here ¢y, = ¢(jg, — 9l). The physical interpretation
of Eq. (4.9) becomes more evident if we introduce the

velocity vector §;, = (1/m)p,. Then

Clfil = 3 af la o @.12)
where
mas = J %91t N(qy) das, (4.13)
Ngy) = (n — 1) f fi@a ) dpy. (4.14)
Now (4.9) becomes
fl(t,ql,p1)+2£, af‘+z a0, @15

a 851
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We see from (4.14) that N(q,) is the number density of
all but one of the particles, and from (4.13) that
F = ma, = m(a}, a2, a3) is the average intermolecular
force on the particle at the point q, due to the
remaining particles.

5. THE GENERAL PRINCIPLE

The principle introduced in Sec. 3 involves two
steps. First we maximize the entropy S[u], and then
we use the equation of motion (3.6) for u. Insofar as
(3.6) correctly describes the time evolution of u, the
second step of the principle appears to be well
justified. The first step is the questionable one. Surely
it is here that, in order to obtain a simplified descrip-
tion, we pay the price of approximation. In the
principle as stated in Sec. 3, the first step is made
continuously, i.e., at every instant of time. If instead
we could actually solve (3.6), perhaps approximately,
at least for a short time 7, and maximize the entropy
only after this time, we might obtain a better descrip-
tion for f. In some important cases this can actually
be done.

In order to describe this process, we introduce the
solution operator T, of (3.6). Thus,

u) =Tu(), T,=1, T,,=TT,. (5.1

As in Sec. 3 we introduce the function «[f] (which is
also a functional of f) that maximizes (3.7) subject to
(3.8) and hence satisfies

J©) = Lu[f(D). )
We now assume that
[+ 7) = LTulf()]. (5.3)
Since
afa(tt) SISO o, (s

we can, by neglecting a term of order 7, obtain the
equation of motion for f,

oflot ~ (1 T)L{Tulf(t) — ulf(O]}. (5.5)

The precise form of this equation of motion depends
on the choice of =, and how we make the approxi-
mation. (See Secs. 6, 10.) Thus we have been led to the
following:

General principle: For given f, let u[f] be the
unique state function u that maximizes (3.7) subject to
(3.8), and possibly other side conditions such as
normalization or symmetry conditions. Then the
equation of motion for f is given by (5.5) and its
entropy functional by (3.10).
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It is easily seen that for = — 0, the general principle
reduces to the special principle of Sec. 3.

An important feature of the equations of statistical
mechanics is their “irreversibility.” A great deal of
work and considerable controversy has been concerned
with the question of how irreversible equations can
arise from the Liouville equation which is reversible.
In our formulation the origin of the irreversibility is
quite clear. If we assume that the description in terms
of u has the property

STu(t + 7)] = S[T.u(?)] > S[u(®)] for >0, (5.6)

i.e., that the entropy is nondecreasing with time, then
we can easily show that the derived description in
terms of f has the same property. Since we have shown
[see (2.19)] that the basic description in terms of w
satisfies (5.6) (with strict equality), it will follow that
every description derived (directly or indirectly) from
it satisfies (5.6). In general (5.6) will not be a strict
equality and the corresponding description may be
called irreversible.
To demonstrate (5.6) for f, we recall that

SiLf ()] = Slulf(O]] = Mmax S[ll]
Hence, from (5.3)
Silf(t + 7] = max S[u]

Ly=£{t+r)
= max S[u] > S[Tulf(H]].

Lu=LTrulf($)]

(5.7)

(5.8)

(Here the inequality would be an equality if L were
invertible, i.e., if Lu = Lu’ would imply that u = u’.)
Now from (5.6) and (5.8) we see that

Silf(¢ + 7] 2 Slulf(O]] = Silf (D],
which is the property (5.6) in terms of f.

(5.9)

6. THE BOLTZMANN EQUATION

In this section we show that, after suitable approxi-
mations, the general principle, when applied to the
Liouville equation, yields the Boltzmann equation for
the one-particle function. Our derivation is similar to
one we have given earlier' for the Boltzmann
equation, the main difference being that the “molecular
chaos assumption” is now not required. Instead it is a
consequence of the general principle. The essential
tool in our derivation is the expansion (2.26) for F;.

The assumptions we require are similar to those
which are always made (explicitly or 1mphcltly) in
derivations of the Boltzmann equation: We again in-
troduce the average particle speed &, and the effective
range r, of the interparticle potential. [Then ¢(r) ~ 0
for r > ry.] We also introduce the average duration
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of a collision, t, = r/&,, and the average time between
collisions (mean free time), ¢, = v/(r35,). Here
v = V/n is the volume per particle. We now assume
that

rolbo = 1, K 7 L 1y = v[rghy, (6.1)
Fi(t + At,q; + Aqy, p) ~ Fi(t, 41, py)
for A L7, |Aq < 7&. (6.2)

The first condition simply requires that v be much
larger than the “effective particle volume” $mrd. It
also defines the range of the parameter 7 which
appears in the statement of the general principle. The
second condition requires that F; be slowly varying
in the space and time coordinates (but not the
momentum). The condition on the time variation is
sometimes replaced by a “coarse-graining” or time-
averaging of F,.

We now apply the general principle to the one-
particle function

Ft,z) =V, =V f w(t, 2)dzy -+ - dz,,. (6.3)

As in Sec. 4 we maximize the basic entropy functional
(2.18) subject to the normalization (2.22), the
symmetry condition, and (6.3). The result is [see (4.7)]

w = w[F,] = W(t, z) = [T [V7'Fy(t, z)]. (6.4)
=1

Now in (5.3)!® we take f to be F; and u to be w. Then
T, becomes the n-particle solution operator S . Thus,

(5.3) yields

Ft+7,2)="V f dz, -+ dz, S, 2)

=Vfdz2---dznwa+¢,z)

= At +7,2). (6.5)

Here w(t + =, z) = S™W(, z), , W(t',z) is the
solution of the Liouville equatlon with initial con-
ditions (6.4) specified at time ¢, and F| is the one-
particle function corresponding to W. In fact, in
general, we define

(2, z)=V* f Wt 2)dzy,y - dz,,

s=1,2,---. (6.6)
It follows from (6.4) that at the initial time
Fs(t’ 219"'azs)=l—IF1(t9zi)’ s = 1,23'. (6'7)

15 We proceed from (5.3), because we wish to be more explicit
about the form of the approximation made in (5.5).
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FiG. 1. Configuration space for a binary collision.

We now use (2.26) for F,. Then (6.5) yields
Fit+7z)= F~1(t + 7, 7y)

= S‘iZFl(t, z)) + 1 f[s(fliz(ta Zy, Zy)
v

_ B, SUz,, SWz] dzy + 0(12). (6.8)
v

Since (6.8) is an identity in z, we may replace z, by
S®Mz;. We also transform the integration variable by
replacing z, with S®z,, and use (6.7) and (2.12). The
result is

VIRt 4 7, 802) — Fy(t, 2]
-

- iv f [S@F,(1, SVz)Fy(t, SVz,)
.

v2

1
— F(t, 20F(t 29) dagdp + O( ). (69)
The one-particle solution operator is given trivially by

Sil)z1 = S:D((h ;P = [ + (7/m)py, p1]. (6.10)

Hence, if we set g(r) = Fy(t + 7, S{V'z;) we see that
g(r) = DRt + 7, q, + (7/m)py, p1], where

0, 13 0
Dt=_+_zp:a¢.
91

6.11
at m a=1 ( )

Thus, if we apply the mean value theorem, the left side
of (6.9) becomes

‘1' [Fy(t + T, S;I)Zl) — Fy(t, z))]
- i [6(r) — g(0)] = £(*)

*
= DtFl(t + 7% q; + I‘Pu P1)- (6.12)

m
Here 0 < 7* < 7.

To evaluate the right side of (6.9), we choose fixed
values of z; = (q,,p,) and p,, and examine the
integration with respect to q, with the help of Fig. 1.
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In that figure, the coordinates are so chosen that the
particle which is originally at the point q, remains at
the origin. In the figure, the regions 4, B, and C
together form a cylindrical region with spherical end
surfaces. Outside of this region the particles do not
interact, ie., S®[SVz,SMz)] =[z,,z,] and the
integrand in (6.9) vanishes. For points q, in C, the
operator S*) maps q, to g, . Then S® maps ¢ to g;.
For all points in C having the same orthogonal
projection (given by the vector b) onto the plane P,
the momenta are the same, i.e., the final momenta
p;, P, are functions of p, , p, and the “impact vector”
b.

We now insert (6.12) into (6.9) and use (6.2) to
obtain

1 ’ !
DF(t, q,,p) = 7'_0 fdpzfdQ2[F1(t, Q> POF(t, a1, p2)

— Fy(t,q;, p)Fs(t, gy, P + -+ . (6.13)

Here the remainder includes not only the remainder
in (6.9), but an error due to the fact that the spherical
regions 4 and B (regions of incomplete collisions)
have been omitted and the ends of the cylinder C are
not planes but spherical segments. Both remainders
may be neglected by virtue of (6.1) which guarantees
that C is large compared to 4 and B and that (2.27) is
satisfied. In the integral with respect to g, in (6.13)
the integrand depends on q, only through p; and p,
which are functions of b. Hence,

dq, = (v/m) |p, — p.| d4,

where dA is the area element on the plane P. Thus,
neglecting the remainder term, we obtain the Boltz-
mann equation,

1
DFy(t, a1, py) = — f dp, f dAps ~ pil
muv P

X [Fl(ta ‘h ’ pi)Fl(ts ql 3 Pé)
— Fy(t, q,, POF:(1, 41, P2)]

In this section, we have used a notation similar to
that of Refs, 11(a) and 11(b). In the next two sections
we wish to compare our results with Refs. 9, 16,
and 17. Therefore, we change the notation. We
replace q = (g%, ¢% ¢°) by x = (x,, X2, x3) and intro-
duce the velocity vector § = (1/m)p = (&1, &2, &3)-
We replace the subscript 2 by 1 and omit the old
subscript 1. We also set

Fl(t’ ‘11 ’ pl) = (U/m4)f(t9 X, g)'

(6.14)

(6.15)

16 H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).
17 H. Grad, in Handbuch der Physik (Springer-Verlag, Berlin,
1958), Vol. XII, pp. 205-294.
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Then the Boltzmann equation (6.14) becomes

D.f(t,x,8) = +ZE

P ax = J[f],

(6.16)

where
1
1= [4, [Laar—¥
X [f(ts X, El)f(t, X, g{) - f(t’ X, g)f(t’ X, El)]'
(6.17)

The Vlasov equation of Sec. 4 may also be written
in the same notation. We note that

1 v 1
=t F=-f=—"7r 6.18
S y ! Vm‘f nm4f (6.18)

If we replace (n — 1)/n by 1, (4.9) becomes (6.16) with

o

JUfT= ——Ef (1, X) (t x,8), (6.19)

F0=—— f 5 9% = xDp(t, x) i, (6:20)

and

plt, %) = f £(t, %, E) dE. (621)
Physically, p is the mass density and & is the average
interparticle force vector.

Summarizing our results thus far, we see that,
starting with a complete description in terms of the
Liouville equation and the basic entropy functional,
the special principle of Sec. 3 yields the Vlasov
equation for the one-particle function and the
general principle (with appropriate 7) yields the
Boltzmann equation. In order to use either of these
equations as a starting point for a further simplification,
we need a complete description, i.e., in addition to the
equation of motion (6.16), we require the entropy
functional for f. But this functional is easily obtained.
From (6.4) and (6.15) we see that

=11 [;rl?f(t, X, E,,-)}

i=1

wif] (6.22)

maximizes the basic entropy S[w] subject to prescribed
J- Hence from (2.18)

Silf1 = Siw[fl] = i fflogfdx d€ + knlog (mn).

(6.23)
The additive constant is obviously superfluous in
maximizing S; . Thus, omitting the subscript 1, we set

SIf] = ——Rfflogfdx dE.

Here R = k/m is the gas constant.

(6.24)
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7. HYDRODYNAMIC EQUATIONS: FIVE
MOMENTS
Starting with the solution f of the Boltzmann
equation, we introduce a simplified description in
terms of the five functions

p(t, x) = f f(t,x, &) d, (7.1)
puft, X)=f£z-f dg, i=1,23, (7.2
p(t,x) =3 f c’f dk, (7.3)
where
3
=& —-u’=3 (& —uw)l (7.4)
=1
Here we have followed the notation of Refs. 9, 16,

and 17; p is the mass density, u = (¥;, 4,, #3) is the
velocity vector, and p is the scalar pressure. It is also.
convenient to define the kinetic temperature T by

p = pRT. (1.5)

To apply the special principle (Sec. 3) we first
maximize the entropy functional (6.24) subject to
(7.1)«7.3). By the method of Lagrange multipliers

one finds easily that the maximizing fis given by the
“local Maxwellian,”

%
— P _ N2
I=Tleuri=ho= ot p{zp@ ')

= —F _ex {—— i } .

@y P\ el U o
According to the special principle, we see that the
equations of motion for p, u, p are to be obtained by
applying the operator L, defined by (7.1)-(7.3), to the
Boltzmann equation (6.16), and then replacing f by
(7.6). A brief calculation then yields

op , 0
= +ax (ptt,) = Jo = f JUAIdE ()
9 9 o _ ; _
30 () 5 (o) 22 = = f £J11,) dE,
i=1,273, (1.8)
8p 0 2 (0u, R
7 +a (pu,) + = (axv)p—h—fu[fo]d&.
(7.9)

It can be shown®?" that if we use (6.17) for J[f], the
collision terms J, (v = 0, 1, 2, 3, 4) are all zero. Then
if we introduce the Lagrangian time derivative
d/dt = (0/0¢) + u,(9/0x,), we obtain the equation of
mass conservation from (7.7),

dpldt + p(0u,/ox,) = 0, (7.10)
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the equation of momentum conservation from (7.8)
(du,/dt) + (1/p)@p/ox,) =0, i=1,2,3, (7.11)

and the equation of energy conservation from (7.9),
(dp/dt) + §p(0u;/0x;) = O. (7.12)

If we introduce the internal energy per unit mass
defined by

e = 3RT = ¥(p/p), (7.13)
then (7.12) has the alternate form
p(defdt) + p(Ou,/0x,) = 0. (7.14)

These equations form a determined system, the
“Euler equations,” for p, u, p. In these hydrodynamic
equations the heat-flux vector is zero and the pressure
tensor reduces to the scalar pressure p.

It is interesting to note that instead of beginning
with the Boltzmann equation, we can use the Vlasov
equation. To obtain the resulting hydrodynamic
equations, we need only use (6.19) for J in (7.7)~(7.9).
Then it is easy to show that J, =J, =0, and for
v=12,3,

e LRt N P B
m m
(7.15)

Thus in this case, the momentum conservation equation
becomes

du; , 19p ~1lgz, (7.16)

dt P ax, m

where § is the average interparticle force given by
(6.20).

For either set of five hydrodynamic equations, we
complete the description by computing the entropy
functional. We just insert (7.6) in (6.24). The result is

Slp,u, pl = f n(x)p(x) dx, (7.17)
where 7 is the entropy per unit mass,
n(x) = 2R log £ + const. (7.18)
p3

8. HYDRODYNAMIC EQUATIONS: TEN
MOMENTS

We begin again with the Boltzmann equation and
apply the special principle to a description in terms of
ten moments. The result which we describe briefly
below has also been obtained by Kogan,® following a
proposal of Koga.l® We introduce a description in

18 T, Koga, J. Chem. Phys. 22, 1633 (1954).
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terms of
p= f fdg, (8.1)
pu; = J' EfdE, i=1,2,3, 8.2)
P, = f cofdl Lj=1,23;  (83)

where ¢; = £, — u;. These are 10 functions in all
since the pressure tensor (P;;) is symmetric. We
maximize the entropy (6.24) subject to (8.1)-(8.3)
using the Lagrange method. If we use a coordinate
system in which (P,;) is diagonal, it is then easy to
determine the Lagrange multipliers by using (8.1)-
(8.3). In terms of the inverse (Q,;) of the matrix (P,;),
the maximizing f'is given by

f=flewPl=7= 0% [det @

X exp {— gQiicica'=a (8.4)

and if we insert (8.4) into (6.24) we obtain the entropy
functional for the ten moment description,

St . P) = [ o()p(x) dx, (85)
where o is the entropy per unit mass,
i
¢ = 3R log [(—dﬁ)—] + const. (8.6)
ps
If we introduce the scalar pressure
p=1tr(P,) =1} f ¢*f dE (8.7)
and set
Pis = Py; — pby;, (8.8)

then (8.6) reduces to (7.18) when p,; = 0, i.e., when
the stress tensor reduces to the scalar pressure.

We now apply the special principle. This simply
means that we take ten moments of the Boltzmann
equation and then replace f by (8.4). A brief calculation
then leads to the mass and momentum conservation
equations

ap 0

L — 8.9

Py a (pu,) = (8.9)
ou; ou; 1
— e P)=0, j=1,2,3, (8.10
at + a a ( jv) J ( )
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and the equations

9p;; i Qﬂ Ou; —2 du,
at + axv (uvpij) + piv axv + pjv axv Bt ¥) axV prv
Ou;  Ou; . Ou
+ p(ax,- + ox; 8 ax,) *
ij=1,2,3. (811)
Here,
Jiy= f ££, ) dE (8.12)

and J[f]is given by (6.17). The collision terms (8.12),
which are originally given by eight-fold integrals can
be reduced to single integrals which, in turn, can be
expressed in terms of tabulated elliptic integrals. For
the sake of brevity these calculations are not given
here.

If we expand (8.4) for small p;; [again it is con-
venient to use a coordinate system in which (P,;) and
(p.;) are diagonal] we obtain, to first order,

f“fou + (piscic;/2pRT)].

Here f, is given by (7.6) and T is defined by (7.5).
This functional form is the basis for Grad’s ten
moment approximation.!® Except for the collision
term (8.12), our Eqs. (8.9)-(8.11) are identical to
Grad’s, and if we use the approximation (8.13)
instead of (8.4) to compute (8.12), our collision term
reduces exactly to his. A detailed discussion of the
physical interpretation of Grad’s equations is given
in Ref. 16.

The application of our principle to a thirteen
moment description (including the heat-flux vector)
leads to difficulties, because the positive definite
quadratic form in the exponent of (8.4) is replaced by
a cubic and then the integrals over velocity-space
diverge. As pointed out by Kogan® a similar difficulty
occurs in Grad’s treatment in that the one-particle
distribution function can become negative in portions
of velocity-space. An approximate treatment, in
which the exponential is expanded as in (8.13), is
given by Kogan, who also treats molecules with
internal degrees of freedom and degenerate gases.

(8.13)

9. EQUILIBRIUM STATISTICAL MECHANICS

For completeness we derive the canonical distri-
bution function of equilibrium statistical mechanics
from our general principle. The derivation is essen-
tially the same as that of Gibbs,' Jaynes,? and others.
We begin with the Liouville equation and introduce

19 To obtain his ten moment approximation from Grad’s thirteen

moment approximation, we merely take the heat flux vector to be
zero. See Ref. 16, Eq. (5.18) with S; = 0.
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the simplified description in terms of the single
scalar

U= f Hw dz, ©.1)

where H is the Hamiltonian. It is easy to verify that if
we maximize (2.18) subject to (2.22) and (9.1), the
result is

w[U] = Z e PH ), (9.2)
where Z is the partition function,
z= f PHE gy (9.3)

The Lagrange multiplier § is determined implicitly by
9.1), i.e,, by

U= f Hw[U]dz = Z f He P 4z, (9.4)

[The equilibrium temperature is defined by 6 = (k)]
From (2.4) we see that H is invariant under the
solution operator S,. It follows that (9.2) is invariant
and therefore the general principle (in either the form
of Sec. 5 or Sec. 3) yields the trivial equation of motion

dUJdt = 0. (9.5)

The corresponding entropy, obtained by inserting
(9.2) in (2.18), is

S(U) = S[wlU]] = k{log Z(U) + pUL.  (9.6)

In this case the equation of motion (9.5) is un-
interesting but the explicit formula (9.2), the canonical
distribution function, is the basis of equilibrium
statistical mechanics. As is well known, the equations
of macroscopic thermodynamics follow from (9.6)
and (9.3).

10. IRREVERSIBLE THERMODYNAMICS

In this section we derive the equations of irreversible
thermodynamics from the Liouville equation by
using our general principle. A similar derivation is
given by Kubo’ in the quantum-mechanical case. We
introduce a description in terms of r -+ 1 scalars

U, =fai(z)w(z) dz; i=0,1,--,r (10.1)
Here «y = H is the Hamiltonian and the other o;’s
are arbitrary time-independent symmetric phase
functions corresponding to r physical observables.
We maximize (2.18) subject to (2.22) and (10.1). The
result is

WU = w[Uq, - -, U] = Z" exp {— > ﬂ,-ocz-(z)},
(10.2)
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where
(10.3)

z =Jexp {— Zﬂﬁimi} dz

The f; are functions of ¢ determined implicitly by
(10.1), i.e.,

UL1) =foci(z)w[U(t)] dz, i=0,1,---,r. (10.4)

According to the general principle, the equation of
motion for the U;’s is given by (5.5), i.e.,

dd(tj Uty =+ f o (2)[S_, — 1W[U(D)] dz,
i=0,1,---,r. (10.5)
We now assume that §,,- -, f, are small and we

expand (10.2) to first order to obtain

w[U]=zale~'*°”‘“[1 +{ 3B, —zma,(z)],
J=1 J=1

(10.6)
where
Z, =fexp {—PB,H} dz (10.7)
and, for any f,
fy = 73! f e PoTLf iz (10.8)
If we insert (10.6) into (10.5) we obtain
U = = 3B — 12D,
i=0,1,,r, (10.9)

and by inserting (10.2) in (2.18) we obtain the new
entropy function

S = S(UW} = Sw{U]] = k{log z+3 ﬁiUz-}.

(10.10)
From (10.3) and (10.4),
dlogZ/og, = —U,, (10.11)
hence,
25 8/31
U .
s =S U5+ S+ p) =4

(10.12)
We define the forces,

X(1) = (35/aU;) = kfi(2)
and the flows,

(10.13)

= UL1). -(10.14)
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Then the equations of motion (10.9) reduce to the
equations of irreversible thermodynamics,

Ji=2LyX;, i=0,1,---,r, (10.15)
j=1
where L,; is the kinetic coefficient
1
Liy = 7 u@)ef2) — a(S-2)]). (10.16)

From (10.13) and (10.14), we have the equation of
eniropy production,

8@ty = ﬁx,.J,. (10.17)

and from the general considerations of Sec. 5 it
follows that S(¢) > 0.

Under certain conditions, the matrix (L,;) is sym-
metric. Using the definition (10.8) of ( ), we see that
the change of integration variable z — Sz yields

(@ (@o(S_2) = (0LS,Do(2)).  (10.18)

Now, from (2.8) we note that S, = RS_R. If we
insert this in (10.18) and replace Rz by z, we obtain

(D). 2)) = (0 (RS_2)a,(R2)).  (10.19)

We now assume that the phase functions a,, -+, «,
are invariant under momentum reversal, i.e., a (Rz) =
a/z). [This is obviously true for ay = H. See (2.6).]
Then,

(af2)al(S_,2)) = {a(2)a(S_2)),

and from (10.18) we obtain the Onsager relations,

(10.20)

Ly=L;, ,j=0,1,-+,r (10.21)
Since «, = H, we see from (10.16) and (10.21) that
Ly=Ly=0, i=0,1,"--,r, (10.22)

hence from (10.14) and (10.15) that
Upy=J,=0. (10.23)

Thus U, is constant. If we use only the leading term
of (10.6) in (10.4), we have

U, = 23" f He oM g (10.24)
which is the same as (9.4). Thus, to this approximation
B, is constant and we can identify it with the equilib-
rium value £, = (k0)~. Similarly we may interpret
{ ) as the equilibrium average in the formula (10.16)
for the kinetic coefficients.
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Let % be a B* algebra with a group G of automorphisms and K be the set of G-invariant states on .
We discuss conditions under which a G-invariant state has a unique integral representation in terms of

extremal points of X, i.e., extremal invariant states.

1. INTRODUCTION AND NOTATIONS

ET U be a B* algebra, G a group, and  a (group)
homomorphism of G into the * automorphisms of
A. If A has an identity, the set of G-invariant states on
A is compact (for the w* topology) and one may try to
obtain an integral representation of G-invariant states
in terms of extremal invariant states. If G is reduced
to the identity, such an integral representation is unique
if and only if U is Abelian. 1t has, however, been
remarked recently that uniqueness prevails under
more general circumstances (see Refs. I and 2, and
for further information, Refs. 3 and 4). The aim of
this note is to discuss the general problem of existence
and uniqueness of integral representations of invariant
states, using Choquet’s theory of integral representa-
tions on convex compact sets. While some of our
results are best possible (in particular, the characteriza-
tion of G-Abelian B* algebras, Theorem 2.3), others
could certainly be improved (see Sec. 4). Questions
related to the existence of a topology on G are relevant
for applications to physics, but are not discussed
here.
If K is a metrizable compact (phase space) and G
a group of homomorphisms of K (time evolution), it
is known (see Ref. 5) that a measure on X, invariant
under G, can be uniquely decomposed into ergodic
measures, i.e., has an integral representation in terms
of extremal invariant measures. In this note we obtain
an extension of this result of ergodic theory to the
noncommutative case (using an algebra of operators
in Hilbert space instead of the algebra of continuous
functions on a compact) and we weaken the metriza-

t Permanent address: Department of Mathematics, University
of California, Berkeley, California.

1 Permanent address: Institut des Hautes Etudes Scientifiques,
91 Bures-sur-Yvette, France.

i D. Ruelle, Commun. Math. Phys. 3, 133 (1966).

2 D. Kastler and D. Robinson, Commun. Math. Phys. 3, 151
(1966).

3 S. Doplicher, D. Kastler, and D. Robinson, Commmun. Math.
Phys. 3, 1, (1966).

4 D. Robinson and D. Ruelle, “Extremal Invariant States,”
Institut des Hautes Etudes Scientifiques (1966).

5 R. Phelps, Lectures on Choquet's Theorem (D. Van Nostrand
Company, Inc. Princeton, New Jersey, 1966).

bility requirement. The physical problem we have in
mind is that of statistical mechanics of an infinite
system. An equilibrium state of such a system can be
represented by a state p on a B* algebra (e.g., the
algebra of canonical commutation relations for a
system of bosons), and we may assume invariance
of p under some natural group G (e.g., the product
of the Euclidean group and of the particle number
gauge group). One can see that a decomposition of p
into extremal G-invariant states corresponds to a
decomposition into pure thermodynamic phases.
Such a decomposition should thus be unique and the
problem arises to study the conditions on a non-
Abelian algebra and a group of automorphisms such
that the invariant states have a unique integral repre-
sentation in terms of extremal invariant states.

Throughout this note we use the following notations:
A, a B* algebra; G, a group; 7: g — 7, a representa-
tion of G into the * automorphisms of UA; A’, the dual
of A with the w* topology; £ = U/, the set of states
on A (if A has an identity, E is compact); L, the
subspace of W generated by the elements 4 — 7,4
with 4 €U, ge G; £, the orthogonal complement
of £4in A'; E N L}, the set of G-invariant states.

If p € E, we denote by $,, the Hilbert space of the
Gel’fand-Segal construction; =,, the corresponding *
homomorphism of U into the bounded operators on
9,;Q, €9,, the normalized vector, cyclic with respect
to 7,(N) and such that p(4) = (Q,, 7,(4)Q,) for all
AcU

If p € E N £ we denote by U,, the unitary repre-
sentation of G in $, such that U, g)Q, =Q,,
U@ (AU, (g™") = 7(r,A)forallge G, 4€U; P,,
the projection on the subspace of §, formed by the
vectors invariant under U,(G).

2. G-ABELIAN ALGEBRAS

In Refs. 1 and 2, the group G was taken to be R’
and it was assumed that if 4,, 4, € A the commutator
[4,, 7,A,] vanishes when g — co. A suitable generali-
zation of this condition is the basis of our analysis;
we formulate it first in a different manner.
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Definition 2.1: U is said to be G-Abelian if for all
peENtiand 4,, 4, €Y,

[P, (A)P,, P, (A)P,] = 0.

In other words the von Neumann algebra generated
by P,m (N)P, is Abelian.

Theorem 2.2 (Alaoglu-Birkhoff): Let {U,},; be a
semigroup of contractions on a Hilbert space X, i.e.,
a collection of operators such that

MU Llforallael

(2) For any «, eI, U Uy = U, for some y € I.
Let P be the orthogonal projection onto the set of all
vectors in J€ left invariant by all the U,’s. Then P is in
the strong closure at the convex hull of {U,},.;.

This theorem is proved in Riesz-Nagy.® The
theorem stated by Riesz and Nagy is slightly different
from the one given above; what they do is to con-
struct a net of convex linear combinations of the U,’s
and show that it converges strongly, Although the fact
that P is the strong limit of this net is not included
in the statement of the theorem, it appears in the
course of the proof.

Theorem 2.3: In order that U be G-Abelian it is
necessary and sufficient that, for all Hermitian A4,,
A,eWandall pe ENLY,

inf |p([4;, 4:])] = O,
Al’
where A runs over the convex hull of {r,4,:g € G}.

In order that U be G-Abelian, it is evidently neces-
sary and sufficient that, forany pe E N L, ,W e P, X,
with |'¥|| = 1, and A,, 4, Hermitian elements of the
unit ball of A, we have

(lF! ﬂp(Al)Ppﬂp(A2)‘F)= (\F’ np(Az)‘Pp"Tﬂ(A l)lF) (*)°

We prove first the sufficiency of the criterion stated
in the proposition. Let € > 0; then by the preceding
theorem, we can find positive numbers 4, with 3, 4, =
1 and elements g; of G such that

"(Z )'i Up(gi) - Pp)‘”p(Al)\F“ S %6'

If we define
Al’ = z }'iTGiAl s

then both sides of (*) are unchanged if we replace

¢ F. Riesz and B. Sz.-Nagy, Functional Analysis, translated by L.
Boron (Frederick Ungar Publishing Company, New York, 1955),
Sec. 146.
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A, by A, and we have

= [|P,7,(ADY — U, (g)m (A)Y|

= U DP,m(A)Y — 7 (AP < de
forallg e G.

Using this inequality, and the fact that A; is
Hermitian, we get for any positive numbers 4] with
2i4;=1landanyg €qG,

(Y, ﬂ'ﬂ(Al)Ppﬂp(Az)“F) — (v, 7,(Ax)P, 7, (A)'F)]
= I(lF’ 77-p(Al,)Pp77',0(/12)\}]‘) - (llf, Wn(A‘.!)Ppﬂp(Al,)‘F)z
<2241 m (A - 1Py (ADY ~ U (g)m (ADT]
+ I(IF’ ”p([z AA':T”ZAII s Az])‘lf')l
S e+ (Y, 72 Aim,; A7, 4D

But by hypothesis, |(V, 7,([3, 47, 4;, 4,)'¥)]| can be
made arbitrarily small by an appropriate choice of
A;and g}, so

|(llj.’ Trp(Al)Ppwp(A2)\P‘) - (IF’ Trp(A2)Pp7rp(Al)le)| S €.

Thus, (*) holds, so N is G-Abelian.
Now we suppose that U is G-Abelian, so (*) holds,
and we let 4;, g, be as above. Then

(5 ])

~ l(z AU (&I A, my (A )

_ (WP(AZ), 34 Up(ga-)"»("‘l)‘y)’

<2 m (Y] - N(z AU () - P,,)w,,u,)‘vl

+‘ '(\Fa 7Tp(AI)Pp7Tp(A2)‘F) - (lF’ "/:(A2)Pp7rp(‘41)‘y)|
<e

SO

inf
A€ convex hull ot (TgAl}

‘(\Fr ”p([A{, A2])\F)l = 0:
so the criterion of the proposition holds.

Corollary 2.4: Let H be a subgroup of G. Then, if
A is H-Abelian, it is also G-Abelian.

We need only apply the criterion of the preceding
proposition, observing that £}, is contained in £,
and that the convex hull of {r,4,:g € G} contains the
convex hull of {r,4,:h € H}.

Corollary 2.5: W is G-Abelian whenever one of the
following conditions is satisfied.
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(i) For all pe E N £}; and self-adjoint
Ay, A, €,
inf [p([A;, 7,4,])] = 0.
geld
(i) Ais Abelian.
(iiiy £ N L} is empty.
The usefulness of Definition 2.1 appears in the next
two sections; we indicate here, however, the following
result.

Proposition 2.6: If pe ENL and the von
Neumann algebra [P, () P,]" generated by P, ()P,
is Abelian, then

P[P (WP, = P,[P,m,(W)P,].

The vector €, is cyclic for the restriction to P,9,
of P,[P,7,(WP,]"; hence, if this von Neumann
algebra is commutative, it is equal to its commutant
(see Ref. 7, p. 89, Corollaire 2), namely to

P[P, m, (0P,)
restricted to P9, .

3. INTEGRAL REPRESENTATION OF
G-INVARIANT STATES

In this and the next section, we use the theory of
integral representations on convex compact sets (see
Ref. 8). Let K be a convex compact set in a locally
convex topological vector space. The unit mass at
x € K is denoted by d,. We remind the reader that
an order relation is defined on the positive measures
of norm 1 on K by u < u' <= u(f) < p'(f) for all
convex continuous fon K. A measure is called maxi-
mal if it is maximal for the order <, and K is said to
be a simplex if every « € K is the resultant of a unique
maximal measure on K. In what follows we take
K = E N £}, where 2 is assumed to have an identity.
If A€, we denote by A the function on E N £}
defined by A(p) = p(A4).

Theorem 3.1: Let N have an identity, pe E N L]},
and let the von Neumann algebra generated by
P,,vr,,(“l[)P,, be Abelian. Then, there exists a unique
maximal measure g, on E N L}, such that pu, >0,
(i.e., u, has resultant p). The measure u,, is determined
by

pildy - A)
= (Qp’ 7'rp(Al)PpT’-p(A2)[>‘a e Ppwy(Al)Ql)' (l)

7 J. Dixmier, Les algébres d’opératenrs dans I' Espace Hilbertien,
(Gauthier-Villars, Paris, 1957).
8 G. Choquet and P. A. Meyer, Ann. Inst. Fourier 13, 139 (1963).
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Take A,,- -, A, self-adjoint. Since the operators
Ppwp(A})P,,, =, Pym,(A)P, commute, there exists a
projection-valued measure £ on R! such that

P, (A)P, =fti dF(ty, -, t).

If 7 is a complex polynomial of / variables, we have

](Q Alj’(P/)W/)(Al)p/)’ T P/)WP(Al)PI’)QP)'

»?

- Ksz,,, f Tty ) dF(t, - t,)Qp)
< TP, 7, (A)D), - - -, (D, 7, (4)D))]

S sup
@i=1,1y@=0

< sup [F(o(Ay), - -, o(4))
sekNE,;

= sup [F(A[(0), -+, A(a)I.
gl N

This shows that Eq. (1) defines a linear functional
on the polynomials in the 4, which is continuous for
the topology of uniform convergence on £ N £},
By the Stone-Weierstrass theorem, this functional
extends uniquely to a measure u, on £ N £}, which
is > 0 and of norm 1.

Letpy, ", pu €ENLL, A, 2,2, >0,3 1, =
1 and p =3 A,p,. There exist (see Ref. 9, 2.5.1.)
uniquely defined self-adjoint operators T, € [, ()Y
such that 0 < T, < | and for all 4 e .

AipA) = (T'Q #ﬂ(A)T.'iQp)'

S

The T, satisfy > T? = 1. If g € G, we have
U(g)Tl U(g_l) € [ﬂ{)(Q[)]’s

the uniqueness of 7, and the fact that 4,p, € L}; then
shows that U(g)T,U(g™) = T;, hence,

T, e[U@)], [T, P)=0.

By the uniqueness of the Gel'fand-Segal construc-
tion, we may identify §,, with the closure of =, ()T,
m,, with the restriction of =, to §,, and €, with
3 4T, Then U, is identified withthe restriction
of U, to 9, and P, with the restriction of P, to §,, .
In particular, [P, 7, (W)P,1" is Abelian and p, is
thus defined. We have

:up‘-(A‘l Tt "il) = (Q/) ’ 77/) (AI)P/)‘ T Ppl-Tr/li(Al)Qp,-)
= }L;l(TzQp ’ 7T;)(AI)P;J e Ppﬂp(Al)EQp)
= ;(Q 7 (AP, - - P,,vr,,(Al)T%Q,,)

n

z Zilupi(/fl e Al) = {u/)("‘fl e A‘l)'

¢ J. Dixmier, Les C*-Algébres ot leurs Représentations (Gauthier-
Villars, Paris, 1964).

so that
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Now let u be a measure on E N L5 such that
u>96, f $eC(ENLS) and € > 0, one can find a
measure x’ with finite support: u' =3 1,4, , 4, > 0,
p;€ENLEL, such that |u(d) — p'(d) < € and
> Ap; = p (see Ref. 10, p. 217, Prop. 3). If ¢ is
convex we thus have

W) — e < p'(P) =2 40,($)
< Z Auup,((f’) = lup(¢)3

hence u, > . Since u is an arbitrary measure on
E n £} such that u > d,, we see that u, is the unique
maximal measure on E N £§ such that u, >4,
which concludes the proof of the theorem.

Corollary 3.2: If % has an identity and is G-Abelian,
then E N L5 is a simplex.

Remark 3.3: If Ais Abelian, the problem considered
in this section reduces to that of decomposing an
invariant measure on a compact set into ergodic
measures (see Ref. 5, Sec. 10).

4. EXTREMAL G-INVARIANT STATES

Let §(E N Lf) be the set of extremal points of
E N £, i.e., the extremal invariant states. The follow-
ing statement characterizes the elements of §(E N £4).

Proposition 4.1: Let p € E N £5. If Wis G-Abelian,
the following conditions are equivalent:
@ ped(ENLY).
(i) The set =, (A) U U,(G) is irreducible in §,,.
(iii) P, is one dimensional.

The simple proof is left to the reader. We remark
only that the implications (i) <= (ii) <= (iii) do not
make use of the assumption that U is G-Abelian, and
that (ii) = (iii) follows from Proposition 2.6.

The measure u, of Theorem 3.1 is in the “good
cases” carried by §(E M £3). This is so, for instance,
if % is (norm-)separable, because E N £} is then
metrizable (see Ref, 8, Corr. 14). We indicate now
without proofs some more results in this direction.

10 N. Bourbaki, Intégration (Hermann et Cie., Paris, 1965), 2nd ed.,
Chaps. 1-4.
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Proposition 4.2: Let A have an identity and B be
a self-adjoint subalgebra of U; define

F = {0 € E: The restriction of p to 3 has norm 1}.

Then,
(i) ¥ is a G, (a countable intersection of open
subsets of E).
(ii) If u is a measure on E such that x4 > 0,
#(E) = 1, and p has resultant p,
then
p € F <> pis carried by ¥,

cf. Ref. 1, Theorem, Part 4.

Proposition 4.3: Let (%,) be a countable family
of sub-B* algebras of U such that |J,%, is derse in .
Let G, be a separable closed two-sided ideal of A,
for each «, and define

F, = {o € E: the restriction of ¢
to G, has norm 1}, ¥ = NF,.
Then, *

(i) If peF, then H, is separable.

(ii) There exists a sequence (4,) of self-adjoint
elements of U such that if p € 5 and o € E,
then p(A4,) # o(4,) for some i.

(iii) If % has an identity and is G-Abelian and
if  is a measure on £ M £ such that u > 0,
WE NLS) =1 and p has resultant pe F,
then
(» maximal on E N £5)

<> (u carried by §(E N £4)).

(i) and (ii) are easy, the proof of (iii) uses (ii),
Corollary 3.2 and an argument in Ref. 1, Theorem,
Part 5.

The usefulness of (iii) appears in statistical mechan-
ics, where 2 may not be norm separable but the states
of interest satisfy a condition of the type p € ¥. One
has then a unique decomposition p — u, of p into
extremal invariant states and those states are again
in §. For an explicit treatment see Ref. 11, in
particular, the Appendix.

11 D, Ruelle, “The States of Classical Statistical Mechanics,”
J. Math. Phys. (to be published).
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An example is given of a differential form which leads, through Einstein’s gravitational equations, to
an energy tensor representing a null electromagnetic field in the form of spherical radiation.

1. INTRODUCTORY

PREVIOUS paper! obtained the conditions that
must be satisfied by the energy tensor of a null
source-free electromagnetic field. It was also shown
how the electromagnetic field can be determined when
an energy tensor satisfying these conditions is given.
If f,, is the tensor of the electromagnetic field (we
assume Heaviside-Lorentz units), then the energy
tensor is

Tuv =fuaf;¢ - 'l"g/tvfaﬁfaﬂ' (11)

The three algebraic conditions which must be satisfied

by T, are

(1.2)

T,.T: = 18, TosT*, (1.3)

which result from the form of (1.1), and
T, 0" > 0, (1.4)

where v* is any timelike vector. The electromagnetic
field is described as null when the two invariants I;
and I, vanish, where

I = 3o f*, Iy = 3fpf™.

In terms of the energy tensor, this is equivalent to

T,,T* =0, 1.5)
and in this case (1.3) becomes

T,.T; =0, (1.6)
and we may write

T, =C,.C,, (0}

where C, is a null vector. Then (1.4) is automatically
satisfied.

There are five differential conditions of the first
order to be satisfied by C,. These are contained in
the equations NEF (5.13), viz,,

C,C,E,, + C,C,E;,, = C,C,E,, + C,C,E,,, (1.8)
where

(1.9)

1 P. C. Bartrum, J. Math. Phys. 8, 667 (1967); This will be referred
to as NEF,

E,, =C,, + C,, — 2g,,C5.

Finally, there are five integrablity conditions of
higher order which cannot be written explicitly in
terms of C,. These are given in NEF (8.10).

A special case, which the author calls the null-null
case, occurs when C% = 0, and a specific example
of this case was referred to, representing plane radia-
tion. In order to find a specific example of the more
general case when C? 3 0, it is natural to consider
the possibility of spherical radiation. '

If we confine ourselves to the approximation of
special relativity, where the space is assumed to be
flat and Einstein’s gravitational equations do not
apply, it is not difficult to construct theoretical null
electromagnetic fields consisting of spherical radia-
tion. But if we want exact solutions, valid in general
relativity, the differential form must be modified in
such a way that the Ricci tensor satisfies the equation?

R,, — g R = —yT,,. (1.10)

By (1.2) this leads to
R=0, R, =—yT,, (1.11, 12)
and by (1.3) we must have

R,R% = 1g,,R ;R (1.13)

For a null electromagnetic field we must have, by (1.6),
R, R} = 0. (1.14)
2. THE DIFFERENTIAL FORM

A differential form which, in special cases, can
represent spherical gravitational radiation was con-
sidered by Robinson and Trautman.® We use this,
with sign changed to give it the signature +4+ —,
viz.,

2 a 2 2 a 2
ds* = f—;(d& +4 da) + %(dn +% da)
p on p o0&
— 2dpdo — Add®, (2.1)

* We omit the ““cosmic” term for simplicity. Here ¥ = 4y /ct,
where y, is the gravitational constant and y, = 6.664 X 10~%cgs
units. [y] = M-1L-1T2,

2 1. Robinson and A. Trautmann, Phys. Rev. Letters 4, 431
(1960).
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where the coordinates are &, 7, p, o,

A=K — 2pH — 2m/p, 2.2)
0° 0*
K=p (352 ) log p, 2.3)

1 ap 2 o° q 52 1
=-=+4p —~(—) - pq (-); (2.4)

poo 9&dn\p 9&an\p
p and g are functions of &, %, 0. m is a function of o.
Numbering the coordinates &, %, p, 0 as 1, 2, 3, 4,

we find the following nonzero components of the Ricci
tensor, where

= (9%| 08> + (0%/97?), 2.5)

Ry, = (P/P2)Q,

19Q A, Q(pog 0p
R=-%,2(r% _2% :
=T (pas an)

_19Q Q(pdq _0p
Ras ty (pan a&)’

208 p

oo Ea_Q(BQ‘i_?_P)

p0&dy p 0E\pd& Oy

paQ(paq ap) 2(3951___33)
P

pon\pan 0 poc o
+ 30"

o (2 99 _ ?_P)

pon 0of

1p*(0°K | 9K
LB
From these we immediately deduce

R =0, R,R*=20%p% Q.7

The condition (1.11) is automatically satisfied, but
(1.13) is only satisfied if Q = 0. In this case RzR* =
0, so that if there is an electromagnetic field it must be
null. If Q = 0 we can deduce ¢ = 0 by a coordinate
transformation, and the differential form is simplified
to

Ry = (2.6)

2p o*p
= % 550n d&on
2 dm

PZ dO' P2

ds? = (p*p?)(dé* + dn?) — 2dpdo — Ade?  (2.8)
with
A=k -0 _m 2.9
pdo p
1= 22 = p2[p2 o33 = 4,
gl =g"=p /e% & 4 2.10)
gt=—1 g=—(elp*

The Ricci tensor R,, now has only one nonzero
component, Ry, .
We write

0°K
= (e 5

_zdm  mOP 4y

0’K
) do p 0o
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Then,
Ry = —yE?*p?, (2.12)
and
T, = E?/p? 2.13)

by (1.12). E is a function of &, 7, o

3. THE DIFFERENTIAL CONDITIONS

T,, defines the null vector C, (except for a choice
of sign which is immaterial):

=(0,0,0,E[p), C*=(0,0,—E[p,0). (3.1)
Proceeding as described in NEF, we get
Ci,=—Elp>, N=0. 3.2)

We find that the conditions (1.8) are satisfied without
any restriction on the form of E. NEF (8.9) becomes
(writing « for 0),

o¢ 0 P n 0 P
dux da. E (3-3)
-~ = 09 T =0,
op oo p

where @ is an undetermined invariant. The integra-
bility conditions therefore reduce to

0 E
(852 + ) og—— =0, 3.4)
and the general solution is
E . , p O
log— =F(¢+in0), w=—-—, (35
og+in=FE+ma), w=p", (33

where F is any complex function.
We seek a symmetric solution, i.c., one which is a

function of
{=@+mPh

The most general solution of this form is when

(3.6)

F=blog (¢ + in) + loga + ie,

where q, b, € are real and may be functions of o.
Then,

Elp = al, 3.7
and
o =btan! 5/ + e 3.9)
Combining (3.7) and (2.11) we have
1/0°K 10K 2dm 6maop
P = =) -s—+—=, 39
=35 o) v e @9
where
K = az+-2)lo r (3.10)
(o + 73g) ‘
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so that (3.9) is a differential equation of the fourth The differential form now becomes

order for which we have to find a solution p = p({, o).

4. A SIMPLE SOLUTION

A simple solution is

p = (m[me){"(1 + 103), (4.1)
where my, is a constant. This gives
K = (mjmo)'C*", 2)

E[p = n(2/y) (m[me)e", (4.3)
Ry = _L’f(ﬂ)ﬁtz;n_z(l + 1597, (4.4)
P\,
2 %
Ta=25(Z)e iy, @)
Y p\my

A= (ﬂ)%cz" _ipdm _2m 46

3mdo p

The electromagnetic field is now determined with some
degree of arbitrariness, as

Sra = n2Jy Xm0 sin {(n — 1) tan~t pf£ + e,
Sos = nQ2[y)km[me)" cos {(n — 1) tan~1 y/£ + €},
@.7)

where m and ¢ can be any functions of o, and m, is
a constant. We see later that » must be a positive or
negative integer.

If n =0, the electromagnetic field vanishes and
we are left with a gravitational field determined by m.

If m = 0 and m; 5 0, then by (4.1) p = 0 and the
differential form becomes degenerate. This must be
ruled out, but if m — P*my,-— 0 so that m/m, — [I*(s),
then we have a solution

m=0, p=IUa)"(l + {03. (4.8)
Then

A = P — p[I)(dl|do).

That is, if m = 0 we can substitute /*(c) for m/m,
and we have a valid solution giving a null electro-
magnetic field. This alternative is assumed in the
equations which follow.

(4.9)

5. POLAR COORDINATES

Transform to the coordinates r, ¢, 0, ¢t which we
label in the order 1, 2, 3, 4. Here ¢ is the “colatitude”
and 0 the “longitude.” 0 < ¢ < 7,0 < 6 < 27,

E=2tan$/2cos b, 7 = 2tan $/2sin 0,

o=ct—r,

o=, 5.1)
so that
{ = 2tan ¢/2,

1+ 32 =sectd/2. (5.2)

ds® = (2 — A) dr? + Br¥(dg? + sin® ¢ do?)

—2(1 — A)cdrdt — Ac? dr?, (5.3)
where
%‘ 2n
A= (lf’-) (2tané) _2rdm_2m 54
myg 2 3mdo r
B = (m|my)~%(2 tan ¢/2)~2". (5.5)
Then,
gu = A, gzz o B—lr-2, g33 = B2 (sin 95)—2,
ght=—-Q2-4), g¥=—-01-4), (5.6)

g = —Brtsin? ¢,

The world lines defined by ¢t — r = const, ¢ =
const, § = const, are null geodesics.

Whenn =0and m >my;—0,then 4 =1, B=1
and (5.3) reduces to the ordinary “flat” form. More
generally it is necessary and sufficient for flatness that

n=0, m=0, m/m,— o).

The tensor of the electromagnetic field in these
coordinates is

Ss=fu= ’1(2/7/)%("7/”10)%(2 tan ¢/2)" cos (nf + ),

Siz = fo = n(2/ 7)%("7/ mg)¥(2 tan $/2)"

X sin (n@ + €)fsin , (5.7)

where m, € may be any functions of ¢ = ¢t — r. Since
6 is assumed to go from 0 to 2z there will be a dis-
continuity when 6 = 2= unless n is integral positive or
negative.
In these coordinates, the energy tensor has the
following components:
EZ
hh=-Ty=Tuy=-;

r2

2t

$
= "2(2)(2 tan ¢/2)*" % sec* /2. (5.8)
Yy r-\m,

When n = 0, the electromagnetic field vanishes and
the energy tensor vanishes. We are left with a gravita-
tional field defined by m. Variations of m lead to
gravitational waves traveling outward with the speed
of light. They contribute nothing to the energy tensor
and appear only as variations in the Riemann tensor.
If m is constant, we can take m = m, and the differ-
ential form becomes

ds? = (1 + 2—m) dr® + r¥(d¢*® + sin® ¢ d6%)
r
_Am v dt — (1 -~ Z—m)cz . (5.9)

r r

This is equivalent to the Schwarzschild solution for a
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point mass, and can be transformed to the better
known form [e.g., Eq. (38.8) of Ref. 4] by putting

t=1i—@mjc)log[(r[2m —1].  (5.10)

This indicates the nature of m and suggests that when
m is variable it should be confined to positive values
if the results are to correspond to reality.

When n # 0, the electromagnetic field given by
(5.7) represents electromagnetic radiation traveling
radially outward with the speed of light in the presence
of a gravitational field. This exists whether m varies or
not, and the radiation need not have a wavelike
structure. If m does vary we have electromagnetic and
gravitational waves in phase. If we assume that m
must remain positive, the sign of the electromagnetic
field cannot change at a point and the electromagnetic
radiation cannot have a simple harmonic wavelike
form. We could, however, have, for example,

(mfmg)} = 1 + « sin 2mv(rfc — 1),

where k < 1. In this case there would be a simple
monochromatic radiation field of frequency v, super-
imposed on a steady field (of zero frequency). This
restriction on the form of the electromagnetic radia-
tion in the presence of a central gravitational field is
perhaps a peculiarity of our solution and not neces-
sarily fundamental.

The situation is different when m = 0. As already
mentioned above [following Eq. (4.9)] we may now
substitute /3(g) for m/m, so that

A = P2 tan $/2)2" — Qr/I)(dl|do),
B = I"¥(2 tan ¢/2) 2",

fis = faa = n(2[y)H(2 tan $/2)" cos (nf + ¢),

fiz = fas = n(2/y)H(2 tan $/2)" sin (n6 + €)/sin ¢,
(5.12)

(5.11)

where /, e may be any functions of ¢ = ¢t — r. Radia-
tion exists whether / varies or not. If / varies it can
have a simple harmonic form, i.e.,

1 = I sin 2mv(rfc — 1).

The differential form (5.3) becomes degenerate
when r =0, m # 0 and when ¢ =0 or =, n3 0.

¢ A. S. Eddinton, The Mathematical Theory of Relativity (Cam-
bridge University Press, Cambridge, England, 1924), 2nd ed.
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That is, there is a singularity at the origin when m # 0,
and along a line extending “north” and ‘“‘south”
through the origin when n # 0. The same singularities
appear in the electromagnetic and gravitational fields.
The rate of flow of electromagnetic energy outwards
across an element of the surface r = r, t = 1¢, is

cT¥(—g)t db db = (2cn?/8)(m[my)} (2 tan $j2)2"1
X sec? p/2 dd df. (5.13)

If we exclude two cones surrounding the “poles”
defined by ¢ =26, t =t,and ¢ =7 — 28, t =1, we
may integrate over the remaining surface r =,
t = t. We find that the rate of flow of electromagnetic
energy across the surface is

(2mc[y)(2)2"n(m[me)¥{(tan B)~2" — (tan §)*"}.

This outward flow of energy occurs even when m is
constant or zero. It is presumably compensated by an
inflow of energy along the lines of discontinuity, i.e.,
from the “north” and “south.” This is an adaptation
of a suggestion made by P. G. Bergmann in respect of
gravitational radiation (see Ref. 3, p. 431).

(5.14)

6. SPECIAL RELATIVITY APPROXIMATION

If we abandon Einstein’s gravitational equations, we
may consider the possibility in special relativity of
similar electromagnetic fields existing in flat space-time.
In polar coordinates we may write, corresponding to
(5.12),

Jfia = fa = ftan” ¢/2 cos (nf + ),
JSi2 = fos = ftan™ ¢/2 sin (nf + €)/sin ¢,

where f, € are any functions of (¢t — r). These satisfy
all the necessary conditions for a null source-free
electromagnetic field and represent radiation traveling
radially outward with the speed of light. Note that
the field does not now vanish when n = 0.

The ordinary vector “‘northward” and “eastward”
components of the magnetic and electric fields are

H, = E, = ftan" $/2 cos (nf + €)/r sin ¢,
H,= —E, = ftan" ¢/2 sin (nf + €)/r sin ¢.

The null electromagnetic fields considered here are
such that the invariant N, defined in NEF (7.1),
vanishes. This allows for the existence of the arbitrary
variable € in the description of the electromagnetic
field, as in the case of plane radiation. It would be
interesting to find, if possible, a case when N # 0.

(6.1)

(6.2)
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We investigate, in local field theory, general properties of commutators involving Poincaré generators
or stress-tensor components, particularly those of local commutators among the latter. The spectral
representation of the vacuum stress commutator is given, and shown to require the existence of singular
“Schwinger terms” at equal times, similar to those present in current commutators. These terms are
analyzed and related to the metric dependence of the stress tensor in the presence of a prescribed gravi-
tational field and some general results concerning this dependence presented. The resolution of the
Schwinger paradox for the T#* commutators is discussed together with some of its implications, such as
“nonclassical” metric dependence of T#¥, A further paradox concerning the vacuum self-stress—whether
the stress tensor or its vacuum-subtracted value should enter in the commutators—is related to the co-
variance of the theory, and partially resolved within this framework.

L. INTRODUCTION

HE commutation relations among the generators
(P#, J*) of the Poincaré group, together with the
existence of a unique normalizable vacuum state,
require their vacuum expectation values to vanish.!
Lorentz invariance also dictates the effect of these
generators on any tensor, in particular on the sym-
metric stress tensor T#" itself, thereby placing require-
ments on the vacuum expectation value of the latter.
While the stress tensor does not in general vanish in the
vacuum, one may of course define subtracted stresses,
T# = T# — (T*). However, the commutator of any
operator with T#¥ is equal to that with 7%*. In par-
ticular, commutators such as i[79(r), T®(")] are
independent of whether 7% or T is used. This com-
mutator, one of several which determine the Lorentz
covariance of a theory,?? has the particularly simple
form {[T%(r), T®(x")] = [T%(r) + T*()]0,6(x — r')
for fields of spin < 1. The right-hand sides of such rela-
tions, on the other hand, are clearly dependent on
whether T#* or T*' is used. We may see, in going
symmetrically from the Poincaré algebra, through
relations of the type [J#*, T*] to [T**, T*], that the
right sides are in fact independent of whether T#" or
T is used, provided, as is required by Lorentz invari-
ance, that (T*) = —Ang** (4 is constant, 7*¥ is the
* Supported in part by the U.S. Atomic Energy Commission and
by U.S. Air Force, Office of Scientific Research Grant 368-65.

t John Simon Guggenheim Memorial Fellow, 1966-1967.

1 This also follows from the absence of constant vectors or anti-
symmetric tensors to represent the constants (P*) and (J#¥). We use
the notation (4) to denote the vacuum expectation value, where the
vacuum is assumed to be unique, normalizable, and invariant under
the inhomogeneous Lorentz group.

* J. Schwinger, Phys. Rev. 127, 324 (1962); 130, 406, 800 (1963).
* P. A. M. Dirac, Rev. Mod. Phys. 34, 1 (1962).

Lorentz metric). Conversely, the connection of the
stress tensor commutators to the Poincaré algebra
will then also be verifiable in terms of either the
original or the subtracted stresses. While these results
are satisfactory, they are somewhat formal, for the
usual evaluation of (T#*) (even for free fields) yields
a divergent, noncovariant result. (For example, the
Maxwell field has T% =0, (T%) > 0.) Taking this
noncovariance literally implies that a Wick ordering
must be performed not only on T** itself, but on all
commutation relations involving T*" or the generators
as well. This can be avoided by using extremely ad hoc
prescriptions, which make (T*') covariant. These
prescriptions are closely related to the necessity (for
reasons given below) of redefining T#" as the limit of a
spatially nonlocal operator.

Independently of the operator commutators men-
tioned above, the vacuum expectation values of local
stress-tensor commutators ([7**, T%°]) may be ex-
pressed in Lehmann-Killén (spectral) form solely on
covariance grounds. Comparison with the operator
expressions then implies, in addition to the above
conditions on (T*), the necessary presence of
Schwinger terms* [singular terms involving higher
derivatives of d(r)] in the equal time 7* commutators,
in close analogy to the corresponding results for current
commutators. The metric dependence (of a fully
quantum nature) of T*" in an external gravitational
field implied by these terms is discussed. This depend-
ence is in addition to the “classical” one dictated by
general covariance which is also treated here. We
give both general results on metric dependence of

4 J, Schwinger, Phys. Rev. Letters 3, 259 (1959).

1468



STRESS-TENSOR COMMUTATORS AND SCHWINGER TERMS

T*" and also, in the canonical formulation of specific
local fields, the explicit (classical) dependence on the
components g,, needed to evaluate the commutator
expressions.

II. COMMUTATORS INVOLVING GENERATORS

Lorentz invariance is established in a field theory
when the existence of Poincaré generators can be
demonstrated. What is often actually exhibited, in a
manifestly covariant theory, is not the Poincaré
algebra of the (P*,J*°) but rather their effects as
generators of field transformations:

ily(x), P*] = 8"y(x), (1a)
ily(x), J*'] = (x*9" — x*3*)p(x) + i8*"p(x), (1b)

the matrices S** realizing a finite dimensional repre-
sentation of the Lorentz group. If Egs. (1) hold for
a complete set of fields y, they define the generators
uniquely to within an additive ¢ number. We now
invoke the group structure implicit in Egs. (1) and
observe that, by the Jacobi identity, the operators
(P», Jw) defined by the right-hand sides of

i[P*, P] =0, (2a)
i[P", J).a'] —_ nulpd — ,']AMP'}.’ (2b)
i[Juv, J).a] —_ nuljn — ﬂuajl.v + ,,lv).jua — ,',’vajul’ (20)

generate the same Lorentz transformations [Egs. (1)]
as do (P#, J*), The (P#, J**) then differ at most by a
¢ number from (P¥, J*); further, Egs. (2), together
with the existence of a unique (invariant) normalizable
vacuum, require that (P#) =0 = (J%), but not, of
course, that (P*) = 0 = (J4), The (P*, J*°) are com-
pletely fixed by this requirement, for any other set
would differ by a ¢ number and hence not vanish in the
vacuum. We may then, if we like, rewrite Egs. (2) as
the usual algebra of generators with vanishing vacuum
values simply by putting bars over the (P*, J**) on the
left sides:

i[P* P =0, (3a)
i[P*, J*] = n*3P° — 5P, (3b)
i[jnv’ ]la] = nuljuv — nnc]lv + nv).jva — nvajnl. (3C)

We emphasize that Lorentz invariance requires
not only the vanishing in the vacuum of the right
sides of Eqs. (2) [or the members of the algebra of
Eqgs. (3)], but that the commutators on the left must
automatically produce the correct (P*, J*) generators.

Consider now the effect of the generators on an
arbitrary symmetric second-rank tensor T¥(x); the
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commutators must take the form

i[T*(x), P*] = *T*(x),

i[T*(x), J*] = (x*¢° — x°0")T*(x)
+ A T™(x) — o T(x)
+ 7T (x) — 7 T*(x). (4b)

As before, the left sides of Eqs. (4) must vanish in the
vacuum. For consistency then, Eq. (4a) requires that
(T*") be constant,

(4a)

T (x)) =0 (5a)

while Eq. (4b) requires in addition that the constant
be invariant, namely that

(TH(x)) = — 2. (5b)

Equations (5) just express the well-known translation
and rotation invariance requirements on the vacuum
expectation of any local symmetric second-rank tensor.
If, in particular, T#'(x) is chosen to be the stress
tensor of a local field theory, we see that Lorentz
invariance [as expressed by Eqs. (4)] does not require
that (T**(x)) vanish, but only that it satisfy Egs. (5).
However, precisely the conditions expressed by Egs. (5)
are sufficient for the right sides of Egs. (4) to have the
same form in terms of T#'(x) = T#'(x) — (T*), as is
easily verified. We may then write

i[T*(x), P*] = *T*'(x),
iTH(x), J*] = (x*0° — x"09)T*(x) + n*T*"(x)
— ,qp.aT).v(x) + nvlTﬂa(x) — ﬂwT”)'(X).
(6b)

From Egs. (6), one may now conclude that if the T*
on the left are integrated® to yield P* or J* [or if one
puts T#* on the left and integrates them to (P*, J*)]
the corresponding integrals on the right are repre-
sented by the correct (P#, J4) as required by Egs. (2)
or (3). [Some care must be taken in establishing this;
if one starts from Eqgs. (4) in terms of the original
T# on the right, the required integrations by parts
yield nonvanishing surface terms here since T,
unlike T**, does not vanish at infinity.”]

(62)

5 THY is not necessarily a local function of the canonical variables
even if the Lagrangian is local (e.g., the Maxwell field with sources
or the gravitational field). Even where T#V is a local function, as for
the free spin-two massless field, the commutator [T°°(r),T°° (x')],
for example, is not necessarily local. See S. Deser, J. Trubatch, and
S. Trubatch, Nuovo Cimento 39, 1159 (1965).

¢ The generators P# and JA9 can, of course, be written in terms of
the stress tensor TAY through the relations P# = | d*rTo(x), JAd =
§ d*r{xAT%?(x) — x?T°4(x)). The same relations then obviously hold.

7 We here assume that any physical system is sufficiently well

localized that (x)3T(x) — 0 as r — oo. This will insure that the

generators (P¥, J39) have finite matrix elements between physical
states.
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III. STRESS-TENSOR COMMUTATORS

We now consider a general set of local equal-time
commutation relations® among the T#"(x) which, upon
integration,® yield the Poincaré algebra, Eqs. (2) and
(3), as well as Eqs. (4):

fT%(r), T()] = (T%(r) + T°('))0,d(r — 1)
— P00, ), (7a)

i[T%(r), T°"(x")] = (T™(x) + T®(x")6™")0,6(r — 1)

— 7%:0%r,r'), (7b)
i[T%@), T™x")] = (=0°T™(x) + T°"(x')0"
+ T°"(x")0™)é(r — r')
- ,,-_OO,mn(r’ l'/), (70)

i[T%(r), TO"(x)] = (T°"(X)d" + T*X(x')9")o(r — 1)

— PR0n(r,x), (7d)
T, T} = (T™@8 — Tm(r)om
— T™(r")6™*)0,0(r — r’)

— F0kmn(r, 1), (7e)

The operators #%7(r, x') in Eqs. (7) are, in general,
model dependent; they are, however, constrained to
have certain integrals and moments vanishing. These
constraints arise as the explicit 7#¥ dependence on
the right sides of Egs. (7) is precisely such as to yield
Eqgs. (4) when integrating (or taking first moments)
over r or ' [and, of course, yields Eqs. (2,3) when
integrated over both variables]. Thus, for

,7-.:00,00(1-’ r’) —_ _,7-.00.00(1-” r)’

we must have in general that
fdsri-""""’(r, ry=0= f dBrxk700-00(r, v').

Relations (7) do not form an algebra, partly because
of the 7, partly because no condition from the Poincaré
relations is available to specify [T%}, T™"] in a model
independent way. We are, of course, assured by the
earlier discussion that, upon integration of Egs. (7),
the right sides will be expressible in terms of the
T*. We may now ask if this is also the case for Egs.
(7) themselves? The condition (T#) = —An*” clearly
ensures that Eqs. (7a)—(7d) hold also in terms of T*".
However, Eq. (7¢) changes form, by a term

Nz(amnékl — mEkHnl __ amlank)ala(l. — l',)
when T* is replaced by T** + An*>. This difference

has a vanishing integral over r and a vanishing
antisymmetric first moment; hence it can be absorbed

8 Some of these relations are given in Refs. 2 and 3.

D. G. BOULWARE AND S. DESER

into the 7°%%m"(r, 1') term, leaving a formally identical
expression for the model-independent stress-tensor
parts in terms of the T** together with an appropriately
redefined 7°%™(r, r'). We will see, in fact, in terms of
the spectral form for ([T*'(x), T*°(x")]), that a sum
rule relates certain integrals of spectral functions for
(I™"y and (7%™") or, equivalently, these integrals to
(T™") and the redefined (7% m"),

IV. SPECTRAL FORM OF VACUUM
COMMUTATORS

If the T#(x) are local operators and transform as
tensors under proper Lorentz transformations, the
vacuum expectation of the stress tensor commutators
can be given a Lehmann-Kaillén representation.® For
an arbitrary conserved symmetric second-rank tensor,
there are two independent weight functions specifying
the vacuum commutator;

(O] [T*(x), T*(x)]10)
=j~oods{p2(s)[6u;.0va + guaev}. — geuvezu]
0
+ Poeuve IG}A(x - x’s S), (8)

where §#¥ = np#* — s719#¢" is conserved [i.e., 3,0*° X
A(x, s) = 0] and A(x — x', ) is the causal propagator
with the property that A(x — x’, s) = 0 and

0°A(x — X', 5) = ié(r — 1)

for x° = x'% The functions py(s) and py(s), repre-
senting the contributions of intermediate states of
mass s and spin 2 and O respectively are nonnegative
if the Hilbert space metric is positive definite.1°

The only nonvanishing equal-time commutators
are those with an odd number of temporal indices
[since A(x, s) is odd in x°]:

O] [T™(x), T**(")]10)
= —i[ st + ON-TIFOE = 1) 09
1 [T*(x), T™"(x')] |0)
= _ifwds{s~1p2(s)(6mkénl + 6nkaml — %6“6"‘")
0

X 0,0(r — ') + 5 py(s)8*'6™"9,8(r — 1')
+ 5 [3pa(s) + po(s)I(—0*™3")d(r — r')}. (9b)

? There are systems which violate these assumptions. For zero
mass fields with spin >3; the Lorentz transformations induce
additional gauge transformations on ThV [see Ref. 5, and C. M.
Bender and B. M. McCoy, Phys. Rev. 148, 1375 (1966)], and so the
latter do not transform as Lorentz tensors. There are, however, no
restrictions on the singularity of the (T#¥(x)T49(x’)) function. If the
Wightman function exists, then the spectral form does also; see
K. Bardacki and B. Schroer, J. Math. Phys. 7, 10 (1966).

10 This condition includes the radiation gauge formulation of
electrodynamics which possesses a positive definite metric and a
gauge invariant stress tensor.
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Comparing the equal-time forms with Eqs. (7) and
using (T*") = —An*, we find first, from the vanishing
components, that

(7000 = ( = (FOmn) = () = (Fm.0m)  (10a)
while Eq. (9a) yields
(P, 1)) = “ﬁ ds S T3pa(s) + plo)]

X (—=V3)P*8(r — r'). (10b)

The right side of Eq. (9b) has both a 9*é(r — ") and
a 0*om9"o(r — r’) part, and so must (7%m"(x, r')).
Equating first derivatives yields a sum rule between
Jo ds s7py(s), §o dss7ipy(s), A, and the 9*d(r — r’)
part of (7% ™) or, alternatively, between these
integrals and the redefined (7%%™") The part of
(7%%mn) which is proportional to ¥0™9"d(r — r’)
satisfies

<7—_0k,mn(r, r')) =fwds §2 3p(5) + po(s)]
0

x ¢"9'9™d(r — r'). (10c)
Note that the (9)*(r — r’) terms in both (7%:") and
(7%-™") involve the same nonnegative integral

fo " ds s gpa(s) + pols)]

Equations (10) are, for our purposes, the most
important consequences of the spectral relations (9).
They imply that singular Schwinger terms? propor-
tional to (9)%6(r — r’) must be present in the operator
relations, Egs. (7b) and (7e), if the operator TV itself

is not to vanish. For, since p, and p, are separately
nonnegative, they would each have to vanish if the
(0)3(r — r’) terms in Eqs. (10) were absent. However,
we could then conclude from the Wightman product
corresponding to Eq. (8), that (T*(x)T*(x")) = 0,
and hence (since 7 is Hermitian) that T%(x) |0) = 0.
This follows from the fact that the Wightman product
differs from Eq. (8) only by the replacement of
A(x — x',5) by AP (x — x',5), but has the same
spectral functions. But, by the Federbush-Johnson
theorem,™* T*" itself must vanish (as an operator) if
T*¥(x) {0) vanishes.'? Thus, positive Hilbert space
metric, positive energy spectrum, proper Lorentz co-
variance and locality by themselves require the
presence of singular terms in 7%:" and 7%, i.e., in
the commutators of Eqs. (7b) and (7). As in the case

11 P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).
The essential point is that any local operator which annthilates the
vacuum must vanish identically. See also R. F. Streater and A. S.
Wightman, PCT, Spin and Statistics and All That (W. A. Benjamin,
Inc., New York, 1964), Chap. 4.

12 This derivation is quite similar to that used elsewhere for vector
currents: D, G. Boulware and S. Deser, Phys. Letters 22, 99 (1966);
Phys. Rev. 151, 1278 (1966).
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of currents, naive application of canonical commuta-
tion or anticommutation relations, even for free spin
0, §, or 1 fields yield, paradoxically, no Schwinger
terms. Hence, the singular operator T*” must be
redefined, in analogy with the procedure for currents,
as the limit of a nonlocal T* in which the constituent
field operators are separated by a space like distance
and the commutators evaluated before taking the
limit, This prescription does yield nonvanishing
(0)*0(r — r') contributions, at least for free systems
whose T*¥ are bilinear in the fields. For interacting
fields, T#* contains, of course, higher powers of field
operators. This case has not been investigated, but
it seems likely that the essence of the problem resides
in the kinematical free field parts.

V. METRIC DEPENDENCE AND STRESS-
TENSOR COMMUTATORS

We discuss here the general dependence of the
stress tensor on a weak external metric g,,; our treat-
ment is essentially a generalization of the analysis of
the second paper of Ref. 2, which treated the case of
a weak external gy, (this being sufficient for the [T,
T%] commutator). These considerations bring out
some properties of the functions 7 of Eqgs. (7), con-
stituting, in fact, a derivation of the latter equations.
We also remark on a more specific problem: the de-
pendence on an arbitrary metric of the stress tensor
for local dynamical fields. The dependence on the
four components gg,, needed to evaluate the right
sides of Eqs. (7), is explicitly exhibited for fields of
spin <1, and seen to be in accord with the require-
ments for a Hamiltonian formulation of the coupled
matter and gravitational fields.

We begin with the definition of the stress tensor of
a dynamical system as the coefficient of the variation
of an external metric in the generally covariant form
of its action®® according to

Wy = f dx}0g, (B (x),

where T#(x) is the metric dependent symmetric tensor
density. Thus a general matrix element in a prescribed
classical external g,, obeys

—2i[8a | b)/g, ()] = (al B(x) [b) (lla)
and a second variation then yields the stress-tensor
correlation function
2[8a| B*(x) |b)/8810(x")] = i (a] [B*"(x)B**(x)], |b)

+ 2(a| G*(x)/dg,4(x") |b). (11b)
12 A complementary problem is the use of prescribed external

T#¥ in probing the properties of a dynamical metric field, which has
been discussed by the authors, Nuovo Cimento 30, 1009 (1963).
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The last terin takes into account the explicit g;,
dependence of G** (in analogy with terms §;#/d4,
in electrodynamics?). Note the reciprocity

0TG*'(x)/8g,,(x") = 0T (x")[dg,(x).
The conservation law for G*¥ is now the covariant one,
BTy =T, v + B, = 0. (12)

If we vary a matrix element of this equation, we
obtain from
0/08,4 {al G*; v |b) =0

and from Egs. (11) and (12), the relation
TM(x)

9, (a| i[6"(x)B*(x)],. [b) + 0, (a |2 o (x )I )
8ad\X
6F5ﬂ(x) o f
2525 @l T 1)

4 (a| B¥(x) 1b)
08:4(x)

While relation (13) holds in the presence of an

arbitrary metric, we are primarily interested here in

the flat space limit g,, — 7,,. Then I' is zero and the
variation of I,

5F53 = —g* 581¢F2ﬂ
+ %glm(aaagpﬁ + aﬂagpa - apagaﬂ)’ (14)

reduces to the three ddg terms. We may then conclude
from Eqs. (13) and (14) that, in the flat space limit,

6"6‘”(x)}
(x")
+ [T + 1 TH(x) — 7 T(x)]
X 0,6(x —x')=0. (15
In Eq. (15) we have returned to the flat space tensor
T* (which is, of course, identical to the tensor density
B* in the limit), except in 6G/dg where the distinction

must be kept. On the other hand, the discontinuity
of the time-ordered product at x° = x'® now yields

i[T%(x), T(x)10(x" — x"°)
= [ T*(x) — 7 T"(x) — 7 T"4(x)]
X 8,8(x — x) — 20,[6G"(x)/dg,,(x)]. (16)

The absence of a [T%, T™"] relation here reflects the
fact that T™ does not obey a (partial) conservation
law. The commutator terms arise exclusively from
the discontinuities of the time-ordered products, which
yield commutators when differentiated with respect to
time in the course of applying Eq. (15).

Equation (16) is nearly of the form of Eqgs. (7) with
20,(06*/dg,,) playing the role of the (model-depend-
ent) 7%#-4; however, the right side of Eq. (16) contains

+ T2 =0. (13)

{x[T""(x)T“( N + 2
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explicit time derivatives of the delta function which are
inconsistent with the equal time nature of the com-
mutator. There must therefore be terms in 6G%/dg,,
which cancel these time derivatives (there are also
other, time local, parts of 6G/dg). The analysis of the
various terms can most easily be presented by defining
functions #v-4e;
19%(x, x') = 2[6C"(x)/0goo(x")]
+ TYx)”8(x — x'), (17a)
20(x, x') = 2[6B”(x)/dgom(x")] |
+ T®x)n"™0(x — x’), (17b)
17(x, x') = 2[68"(x)/0gmn(x")]
+ [TOm(x)nvn + TO”(X)‘I]vm — TOm(x)nOV]
X 8(x — x"), (17c)
£70m(x, x') = 2[0C*"(x)/dgom(x")]
+ [TOk(x)’l’]vm + TOV(X)‘I]km]
x &(x — x'), (17d)
0 (x, x') = 2[6T(x)/0g ma(x"))- (17¢)
The #¥-%9(x, x") are symmetric,
tuv.la(x, x’) = t).a',;tv(x" X)
and, comparing with Eqs. (7), we have the relation

0, 4" (x, x') = 7™%(x, x') 18)

As an example of how these equations are derived,
we consider Eq. (17a). Equation (16) states that

i[T%(x), T%(x")]6(x° — x0)
= 2T%(x)0,0(x — x") + T%(x)9,0(x — x")
— 20,[0T*(x)/0gao(x")] — 20,[6G*(x)/Oge(x")]-
Then, the definition
2[0B%(x){dgeg(x")] = T™(x)d(x — x') + 1°*%(x, x")
explicitly cancels the undesirable 7%(x)0,6(x — x’)
term. To see whether a similar redefinition is needed
for the §G%(x)/dgee(x") term, consider
i[T%(x), T®(x")18(x* — x'%
= T®(x)d%6(x — x') — 20,[6C*(x)/dge(x")].

Clearly, none is required, since there are no explicit
0,0 terms on the right. Thus, we arrive at Eq. (17a),

1%(x, x') = 2[6C""*(x)/6g0u(x")]
+ T®m™8(x — x')

and obtain the expression
i[T™(x), T*(x)16(x* — x'°)
= [T%(x) + T™(x")]0:0(x — x') — 9,8""*(x, x')
(19)
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A similar analysis yields the remainder of Eqs. (17)
together with the analogs of Eq. (19).

The 7 of Eqs. (7) are antisymmetric, 7"%(x, x) =
—7lo-mv(x’, x), hence, using Eq. (18), the symmetry of
the 7, the antisymmetry of the 7, and the integral
conditions which enforce the vanishing of the mo-
ments of 7, the following expressions are obtained.

%90, x') == 0,0,0,0,8"™"(x, x'), (20a)
1%%x, x') = 8,0,0,[71"™"(x, x') — 990" "(x, x)],
(20b)
1250 (x, x') = 9,0, [75"™"(x, x") + }(9 — 0,)
X TEM(x XY 4 0,0,6 ™ (%, X)),

(20c)
2070 (x, x') = =895 ™" (x, x) — 3D, + 30;)

X 73X, x7) = 90" (x, X)],

(20d)
%m(x, x') = =[5 ™" (x, x') + By (x, x")

+ 3@ — o)™ (x, X')
+ 0,050 ™(x, x"))], (20¢)
Fm(x, x') = e x1) 4 1@, — O™, x1)
+ 0405[73"™"(x, x') + }(8, — 3))
X 7(x, x)] + 850570" ™ (x, X'),
(20f)

where o*™"(x, x'), TEbmn (x, x'), and 7ELmn (x, ')
are symmetric under 7*+™"(x, x') — r™*¥(x', x) and
73 and 7, are antisymmetric. Furthermore,

T, X') = Timr(x, x7).

We have inferred from the integral statements
[f d®r7%m(x, x), for example] that 7%™n(x, x') =

#*™(x, x"). This conclusion holds if #(x, x) is
local, as we assume here. For then, the matrix element,

(pl #(x, x") |0)
= exp (—iph(x + x) 3 f(p)ot(x — x),

where (p| is an arbitrary state (by the Federbush-
Johnson theorem, we do not need to consider more
general matrix elements!?), is a finite sum of deriva-
tives of 8(x — x'). Then the Fourier transform with
respect to x at x’ = 0is 3 li(k + 3p)I*f("), a finite
polynomial in k. If { d®#(x, x") = 0, then the leading
term must be k, and we can re-express ¥ " as 9,7 "
For 7% we can similarly conclude that 7% =
0,,0,0,0,7"™" If the #’s are nonlocal,® the argument
breaks down and one can no longer assume the deriv-
ative form in all cases.
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Equations (16)~(18) and Eq. (20) may then be used
to determine the equal-time commutators

i[T%(x), T®(x)16(x° — x'%)
= [T™(x) + T*(x)]90(x — x')
— 00,09, (x, x'),
HT%x), T*"(x)]6(x° — x'°)
= [T™(x) + T*(x)6"9,8(x — x’)
— B9, @,[r5 ™" (x, X') — $(3, + (%, x7)],
(21b)

(21a)

i[T0), T™(x)]6(x" — x'%)
= [—°T™"(x) + T°"(x")a" + T°*(x")a™}6(x — x')
+ 0,0,[7E ™ (x, x") + (3, + Op)ri™(x, x')
= 30 + 9p)*1"""(x, )], (21¢)
i[T%(x), T""(x)]6(x* — x")
= [T"™(x)d* + T™(x")a™16(x — x')
— a a/ ,rkl mn(x’ xl)’
i[T%), T™"(x)(x* — x)
— {Tmn(x)akl — Tlnémk — Tlmank]aia(x — X')
= Of+3" " (x, x") — $(@ + )75 ™" (x, X)) (21e)
This is the most general form of the stress-tensor
commutation relations consistent with the Poincaré
algebra and locality. The form of the relations has
been obtained here from the metric dependence of
G#, the =, functions representing model-dependent
parts. The structures are consistent with the time
locality of the commutators since time derivatives only
occur in the combination 3, + 0, which cannot
generate any derivatives of a delta function 6(x® — x'),
but only the time derivative (or commutator with
P% of the operator coefficient of the delta function.
Hence, we conclude that the functions 7, must be
local in time. There is no such direct requirement on
o since it does not appear in any of the commutators.
These statements do not imply that B is independent
of time derivatives of g;,, but only restrict the form
of the dependence to that implicit in Eqs. (17) and
(20). Thespectral functionsensure that =, and =, cannot
be zero. Their vacuum expectation values must be

0,0,0.,(75" ™" (x, x))
— a5t + puovamaGe - ), @20)
o,(7Em(x, x')
= - f ds{s_lpz(s)[tsmké’“ + S — ga™ngH]
F O — x)
+ ﬁ " dss[4pa(s) + po($)IFFI"E(x — x). (22b)

(21d)
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The time derivative terms cannot contribute in the
vacuum, since they are commutators with P°, hence
only the above terms survive if we express the relations
in terms of T. The single derivative term is highly
model dependent and occurs “classically” in the spin
4 case, for example.

The general results embodied in Eq. (16) and the
subsequent form Eq. (21) determine the equal-time
commutators once the metric dependence (both
classical and quantum) of the stress tensor of a partic-
ular system is known. It is interesting that for an
important class of systems, namely local dynamical
fields of fow spin (<1), this dependence (more pre-
cisely, its classical part) can be inferred explicitly in a
uniform way. One takes the field’s flat space action
in terms of canonical variables'* (w ; , ¢,) and expresses
it in a generally covariant form. It is then possible to
redefine the canonical variables in the presence
of g,, such that the flat space canonical form

Wi = f (S 7dody — Ky biim)]  (23)

only changes by X(m, ¢; ) = ¥(m, ¢, g). This may
be accomplished!* essentially by defining =, so as
to absorb the (—g,)?¥ of the volume element.

The energy density J¢ now takes the form

Wy, bys 8) = —NOy(m 4, b4 &)
- Nl@?(ﬂ'A s s &is)

in terms of the convenient notation N, =g,,,
Nt =3gUN;, N= (—g“")‘* = (N;N! — goo)‘%, where
the contravariant metric g/ is the inverse of the spatial
part of g,.: 3g'g, = 0.. The fundamental point is
that the ¢ are functions only of the spatial components
and not of the g,,, the full dependence on the latter
being through the linear coefficients &, N¢. In the flat
space limit, the ©Y are just the energy momentum

1 These results arise from the canonical analysis of coupled
gravitational and matter fields: R. Arnowitt, S. Deser, and C. W,
Misner, J. Math. Phys. 1, 434 (1960), and Phys. Rev. 120, 313 (1960)
for derivations and explicit examples (including the Maxwell field).
For the canonical form of the spinor field (which is somewhat more
complicated, involving essentially derivative coupling to the metric)
see T. W. B. Kibble, J. Math. Phys. 4, 1433 (1963). Higher spin cases,
where the constraints among matter field components complicate
matters are dealt with in their g,, dependence, which is relevant to
the [T°°, T°] relation in Ref. 2. Here, the process of eliminating
constraints to reach canonical form in terms of the independent
modes may bring in more metric dependence than that given in the
text for low spins. In particular, the ®% may acquire N, N depend-
ence when expressed in terms of the reduced variables. In view of the
subsequent discussion, this may be regarded as a strong argument
against the physical significance of elementary higher spin systems;
for the latter would then not have the desired property of a system in
time development from a given set of Caudy data, the energy
momentum density being dependent at any instant on the physically
meaningless choice of coordinates N, N*, as well as on the dynamical
variables. This would also raise analogous difficulties in the Einstein
constraint equations Ry = —K©j.
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density components. Thus, for the Maxwell field,
—Af = %g_%[gu(eiej + BB)], ) = ¢,/ B, and
el = (—g ) F% Bi = €9, 4,. The correct variables
here are the contravariant densities ¢’ and 3¢ while
g is the three-dimensional determinant and —g,
represents the four-dimensional one.

Now, if one varies the combined Einstein-matter

action,
W= Wy + Wy, Wy = K f dx(—g)'R

the quantities ©9, are precisely the sources of the G}
components of the Einstein tensor, referred to a time
constant surface. For Wy itself may be written in the
form*

Wy =fa'x[rr”8,,gi,- - NRO(’”’”; g:i) — NiRi(W”, gl

the R, being linear combinations of the G and
depending only on g,; and its conjugate variable =*/
but not on N or N,. The four equations R, = —KO%
are in fact the four constraint equations corresponding
to V. E =% in electrodynamics and ©) are then
clearly linear combinations of the correct energy
momentum density source of the Einstein field.

The energy momentum density ©% depends only,
as it must for a correct formulation of the initial value
problem (Cauchy data), on quantities which transform
as tensors under coordinate transformations within
the t = const surface and are invariant under coordi-
nate transformations off the surface, namely on =,
¢4, and g;. The gauge quantities N, N (or, equiva-
lently, the g,,), on the other hand, are altered by
coordinate changes off the surface (they correspond
to the gauge variable A° in electrodynamics) which is
why they are not desirable in a correct 9.

The ©9 may now be used to evaluate the stress-
density G** defined according to Wy, = § [ dxdg,,G*,
which enters in the general commutation relations.
The ©9 and T™ are not identical since they are the
coefficients of (N, N?) and (g, gq:), Trespectively, in
the action. Thus we find from —}G* = §¥/dg,, that

TP = —NT'@;, T"=*g"[0)+ N,NO7], (24)

which gives the explicit dependence of the G%, for
example, on g,, and thus also defines the (“classical”
part of) 6G%/dg,,. Note that in the limit g,, = 7,,
the B* and ®% coincide. However, in computing the
0G/dg terms, the relations (24) must be used. For
fields of spin <1, including electrodynamics, these
results (which hold for arbitrary g) may be used to
calculate the [T, T%] relations. They agree with
direct calculations using canonical commutation
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relations and keeping g,, = 7,,.'* One may also
recover the results of Ref. 2 for a weak external go,.
In particular these forms imply that there are no
additional 7°°-%° terms in the {T°, T%] relations for low
spins.

We emphasize that the general metric dependence
obtained here is the classical one and does not include
the purely quantum dependence on the metric which
is required to yield the Schwinger terms. Indeed,
there is here a curious contrast to the situation for
currents. There,»* ‘“classical” dependence of the
current on the corresponding external field (e.g., the
Maxwell field) may or may not be present, depending
on whether or not the system has spin }. If there is
classical (4%) dependence, it automatically gives rise to
Schwinger type terms. Here, on the other hand, there
is always classical metric dependence on T*, irre-
spective of spin, but this dependence turns out never
to be sufficient to yield Schwinger terms (at least for
spin <1). Thus, for all fields, one must redefine G#*
as the limit of a spatially nonlocal operator to obtain
the terms.

In our framework, involving an external (or
dynamical) metric, one must simultaneously insert
an appropriate quantum metric dependence in this
redefined G**. The necessity for this prescription may
also be inferred either from general covariance (for
a “split” G** without extra dependence no longer
transforms as a coordinate tensor) or, in terms of a
dynamical gravitational field, along lines similar to
those of Ref. 12 for currents coupled to a Bose field.
The Schwinger terms will then correspond to the non-
classical part of G/dg. The elaboration of these
remarks regarding the nonclassical metric dependence
and nonlocal B*” constitutes a separate program,
which we do not pursue here.

Some general conclusions may be drawn, however,
from the 929 nature of the Schwinger terms, together
with the fact that they must arise from 0,65%//dgy, or
0(0T%[dgy;) and 0,(0T"/dgy,) in [T, T%] and
[T°%, T*], respectively. There must be at least the
following nonclassical dependence: G%[02,g,,],
“G‘OO[ailgmn]’ and T"ij[ailgmn]’ and B”[aizgoo, al%lgmn]

An alternate argument leading to these dependences
in the B*" is as follows. In electrodynamics, [, ] # O
and Gauss’s equation V - E = j®implies that [EZ, j!] 7
0, where E” is the longitudinal electric filed. Lorentz
invariance then requires that the transverse part ET
also fail to commute, i.e., that [E7Z, j] 5 0, and hence
that j = j(47). Similarly the constraint equations
G% = —«T) require that [G}, T*], {G}, T™] and

"

15 Explicit calculations on these questions have been carried out
by J. Trubatch (unpublished).
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[G?, T*'] not vanish. In the linearized approximation,
where Gy ~ V?g;; and G? ~ =%,j Lorentz invariance
then requires that G% depend on the variables =%/
conjugate to g,; which means in particular that it
involves 02,g,; (since 7%/ is by its definition propor-
tional to g, ;). Likewise G and G** must depend on
02,g;;- It is hoped to return to these questions else-
where.
V1. SUMMARY

We have examined a number of consistency con-
ditions on the commutation relation among the
Poincaré generators and the stress-tensor compo-
nents in local field theory. In particular, the apparent
difficulty that, while the right sides of such relations
should vanish in vacuum, they actually involve the
unsubtracted (nonvanishing in vacuum) stresses or
their integrals, was resolved by the Lorentz covariance
requirement that (7#*) = —Ay*'. The latter ensured
that the right side could simultaneously satisfy both
these apparently contradictory conditions.

The general form of the equal-time stress-tensor
commutation relations compatible with the Poincaré
algebra was exhibited, and compared with the
Lehmann-Killén representation® for

O] [T*(x), T*(x")]10).

The latter depends only on the locality and Lorentz
transformation properties of 7%, and involves two
nonnegative weight functions for conserved 7** when
the Hilbert space metric is positive. The main result
of the spectral representation (and hence a conse-
quence of only locality, proper Lorentz covariance,
positive energy spectrum, and positive Hilbert space
metric) was the necessary existence of Schwinger
terms, of the form 9%(r — r’) in the equal-time com-
mutators [7%(r), T°"(x')], and [T%(r), T™"(x')].
Paradoxically, straightforward calculations from
canonical commutation relations (even for free fields)
yields neither Schwinger terms nor the covariant form
An# for (T*v). If the stress tensor is defined as the
limit of a spatially nonlocal operator, the Schwinger
terms required by the spectral forms appear. However,
this prescription does not simultaneously reinstate the
covariance of (T*"). We have been able to achieve the
latter only by extremely artificial means, such as
regularization with indefinite weight functions which
would probably introduce negative energy states or a
limiting process in which the spacelike separation was
not along a 7 = const surface. Thus, while it is likely

18 The Lehmann-Killén representation is, of course, valid only in
the flat space limit g — 7. We have used the more general metric as
a device for studying the flat space limit, but many of our results
will be reflected in the full nonlinear theory.
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that the singularity of the strictly local product is
responsible both for loss of Lorentz covariance and
the Schwinger paradox, a unified prescription for
removing both problems has not been found. Inci-
dentally, the above difficulties are most apparent in
the vacuum expectation values, since the operator
products are most singular when associated with
creation and annihilation of excitations at the same
point. For a free field, however, it is possible to cal-
culate (0] T#*(x)T*(x’) |0) for unequal times. This
form is manifestly covariant (with the exception of
the (O} 7% |0y(0] T** |0) terms) and satisfies the
Lehmann-Killén representation. If this is used to
calculate the commutators {[T**, T*]), we find that
the right sides have all the requisite properties in the
vacuum. It is, of course, impossible to calculate
{T*) = —An** by this method, but it does establish
the form for (T**). It is clear from the discussion in
Sec. II that T# rather than T#" is the tensor, otherwise
J would have to be expressed in terms of T rather than
T. The source of the difficulty can be understood
somewhat better by considering the case of a free
spin O field. The term from which the trouble stems
is ¢H*(x)¢*(x), which must be written

$x + 3O)P(x — $6) = T(x, §).
Then
i[T(x, &), J*]

= (x"0 — x"0)T"(x, &) + *T™(x, &)

— gT(x, &) + " T*(x, §) — " TH(x, &)

+ (897 — £9HT(x, &).
In the limit £ — 0, the last term never appears; how-
ever, in the vacuum expectation value, that term is
essential for the proper covariance, even in the limit
& —» 0. Thus, the noncovariance of

T*(x) = Lim T"(x, ),
0

is due to extra terms which are not transformed
properly as £ 0. Once these terms are subtracted,
the remainder T#* does transform correctly.

We have further exhibited the dependence of the
stress tensor on g,, which is forced by the structure
constants of the Poincaré algebra and compatible
with the most general additional “nonalgebra” terms.
These considerations are consistent with the (classical)
explicit metric dependence of G** which was obtained
in the generally covariant canonical formulation of
matter fields of spin <1.

The nonlocal prescription for T* requires, in
order to maintain general covariance, that explicit
dependence on the metric be inserted into the “spread”
©*", which would otherwise no longer transform as a
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tensor under general coordinate transformations.
Now, by direct calculation® in terms of canonical
commutation relations with g,, = 7,,, spreading the
points in G is actually sufficient to produce terms
proportional to (9)(r — r’) in the [T, T°"] and
[T°%, T™"] commutators. In the presence of an external
metric (or in terms of the general §5/dg), the additional
metric dependence must of course be used. The
specific form of this dependence {which corresponds
to the definition

J4x) = efCx + ¥ exp [fe f mdyﬂ(y)w(x)]

in electrodynamics} and the (presumed) consistency
of the general covariance and Schwinger term require-
ments are separate questions which we have not
studied in detail here. We have only given necessary
conditions of the dependence of T** on second
derivatives of g,,, .

However, from purely geometrical considerations,
it may be shown that the necessary nonclassical
dependence on the metric appears in restoring the
coordinate tensor nature of the “split” T*, say
$.(x + €),(x), by use of parallel transfer to make it
a tensor at one point. An operator *D(x, x'), such
that “D(x, x'),¢"(x") is a vector at x may be defined
and is essentially a path integral over the affinity

Des, ), = "fewp [ [y

It is hoped to return to this elsewhere.

Some speculations on the role of these terms when
the gravitational field itself is dynamical and quantized
may be of interest, however. In electrodynamics, the
additional 4, dependence ensures the preservation
of gauge invariance in at least two situations.”” The
first is in the maintenance of zero photon self-mass
in the closed loop diagram, the second the elimination
of finite, but gauge dependent, terms in the “box™
diagram (scattering of light by light). Similarly, it may
be that some of the difficulties encountered in re-
normalizing the interaction of a scalar field with the
quantized Einstein field can be avoided if the correct
form for G*[g] is employed. In electrodynamics,
where the current correlation function 6(j)/04 differs
from the time-ordered product i((jj),} by the explicit
dependence (8j/d4),*® the additional term is needed
both for covariance and for charge conservation.

7 D. G. Boulware, Phys. Rey. 151, 1024 (1966).

1% See Ref. 2, K. A. Johnson, Nucl. Phys. 31, 464 (1962); L. S.
Brown, Phys. Rev. 150, 1338 (1966). The additional dependence
discussed here may or may not be reflected in the Feynman rules
of the resultant theory; this question can only be decided by a
detailed analysis of the role of the extra terms,
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The latter property ensures a vanishing photon self
mass. It seems likely that there is a closed analogy in
our case, where (covariant) conservation requires the
explicit §G/0g term of Eq. (11b); a nonconserved
correlation function would correspond to a graviton
mass (in the language of the linearized theory at
least). There are probably also terms in the graviton-
graviton scattering through virtual matter pairs with
difficulties similar to those of the box diagram in
quantum electrodynamics. Certainly, unless the
metric dependence is inserted, no interaction is
possible with the gravitational field at all, just as the
exp (ie | dy,A*) term is essential for a nonvanishing
current in electrodynamics. Another interesting prob-
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lem has to do with the resulting lack of commutation,
at equal times, between the matter G** and the
gravitational field variables. For, just as in electro-
dynamics, where {E, j] fails to vanish as a consequence
of the 4 dependence of j, the corresponding com-
mutators between ¥ and the canonical Einstein
variables will be nonzero. Since the Einstein equations
are nonlinear, the computation of this noncommuta-
tivity is not so direct as for vector currents coupled
to, say, a spin one field!?; also it is presumably neces-
sary to split the points in the nonlinear terms of the
Einstein equations (which correspond to the G*” of the
gravitational field) in order to avoid similar paradoxes
for the Einstein field itself.
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Kerr’s metric is often said to describe the geometry exterior to a body whose mass and rotation are
measured by Kerr’s parameters m and a, respectively, even though no interior solution is known. In this
paper we give an interior solution valid in the limit when the rotation parameter a is sufficiently smali
so that terms of higher power than the first are negligible, but the mass parameter m is allowed to be
large. This is accomplished by bringing Kerr’s exterior metric into the form of the metric for a slowly
rotating mass shell. Also, the connection is found between Kerr’s parameters and the physical param-

eters characterizing the rotating body.

I. INTRODUCTION
N 1963, Kerr® gave the exact stationary but not
static exterior solution to Einstein’s equations:
ds? = Z(db? + sin? § dg?)
+ 2(dU + asinZ 0 df)(dr + asin® 0 df)
— (1 = 2mrEY(dU + asin? 6 d@)2, (1)

where

X =R+ g?cos? ), 2

U=1{+ R, (3)

and m and a are constants. Kerr claims that this metric
(1) is the metric exterior to a rotating body. The
parameter a is related to the rate of rotation, and

* Atomic Energy Commission, Postdoctoral Fellow.
1 R. Kerr, Phys. Rev. Letters 11, 237 (1963).

m is the mass parameter. Since the appearance of
Kerr’s paper there has been a search for an interior
solution. If any interior solution exists, there must
in particular be interior solutions in the case when a
is sufficiently small that terms of higher power than
the first in @ can be neglected. The purpose of this
paper is to provide such an interior solution which
matches the Kerr solution at a radius r, to first order
in a, but for any m whose gravitational radius does not
exceed ry.

This is accomplished in Sec. III via coordinate
transformations which bring the Kerr exterior metric
into the form of the metric for a thin slowly rotating
mass shell.? For completeness, the exterior and
interior metrics associated with a thin slowly rotating
mass shell are given in Sec. 11

2D R. Brili and J. M. Cohen, Phys. Rev. 143, 1011 (1966).
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The latter property ensures a vanishing photon self
mass. It seems likely that there is a closed analogy in
our case, where (covariant) conservation requires the
explicit §G/0g term of Eq. (11b); a nonconserved
correlation function would correspond to a graviton
mass (in the language of the linearized theory at
least). There are probably also terms in the graviton-
graviton scattering through virtual matter pairs with
difficulties similar to those of the box diagram in
quantum electrodynamics. Certainly, unless the
metric dependence is inserted, no interaction is
possible with the gravitational field at all, just as the
exp (ie | dy,A*) term is essential for a nonvanishing
current in electrodynamics. Another interesting prob-
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lem has to do with the resulting lack of commutation,
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II. INTERIOR SOLUTION

It has recently been shown? that the metric associated
with a thin slowly rotating mass shell of radius r, is

ds® = pi[dr? + r*d0? + r?sin® O(d¢ — Q dr)?]

— V2dr, 4)
where
V= (ry — a)(ry + o),
p=9p, =14+ ar?, (35
Q=0Q,, for r<r,,
while

V=(0r—od)Fr+a),
p=1+ar ©)
Q = (rypi/ry??Q,, for r>r,.
Here the constants have the values
Qy = o,/(1 + [3(ry — )/8«(L + By)]); ()
Bo = a/2(ry — a); (8)
2o is the mass of the shell as seen by an observer at

infinity, and w, is the angular velocity of the mass
shell; the elastic stress in the shell is proportional

to fy.
1II. COORDINATE TRANSFORMATION
The coordinate transformation
& = ¢ + ak coth™! k(R — m),

9

U=t+ R+ mInA — 2m?k coth™ k(R — m) ©)
with

k = (m® — a¥, (10)

A = R* — 2mR + & (11)

eliminates U from the Kerr metric (1) and brings it

into the form?®

ds? = Z(dR?A + d6®) + (R? + a?) sin? 0 d?
— dt? 4+ 2mR Z-Y(dt + asin® 0 dd)2.

To first order in a, the metric (12) becomes
ds? = (1 — 2mR™)1dR2 + R*d0? + R?sin? 0 d¢?
+ dmaR'sin2 0 dd dt — (1 — 2mR™Y) de?. (13)

The spacelike part of the metric (13) can be trans-
formed to isotropic form via the coordinate trans-
formation:

(12)

R = ry?, (14)

where
p=1+4 ori (15)
o = tm. (16)

In these coordinates the four-dimensional metric
becomes
ds? = w¥(dr* + r* d0? + r®sin? 0 d¢?)
— V2di? + (dmafry?) sin? 0 dé dt, (17)
3 This form of the Kerr metric was first shown to me by Robert

H. Boyer (private communication). [t appears, e.g., in a paper
by R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).
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where
V=1(r— o)+ ). (18)

This metric (17) is the same as the exterior part of
the metric (4), i.e., when r > r,, if we set
(19)
Equations (19) and (7) give the connection between
Kerr’s rotation parameter ¢ and the physical param-
eters m, ry and o, of the rotating body.

Thus, when a is sufficiently small so that terms of
higher power than the first are negligible but m is
allowed to be large, Kerr's exterior solution can be
matched to an interior solution.*

By integration of the conservation laws over all
space-time and application of Stokes theorem to this
integral, it can be shown that the following quantity
is conserved:

J = 3m(l + ﬂo)rgwg(ws — Q)/Vs. (20)
For ry > o, this expression (20) reduces to the
Newtonian expression for the angular momentum of
a rotating mass shell. Thus it seems reasonable to
define J as the relativistic generalization of the angular
momentum of the shell. Note that the elastic stress
in the shell and the gravitational potential contribute
to the angular momentum J.

When the relation (7) between Q,, w,, and r, is
substituted into the above expression (2) for the
angular momentum J, there results

2ma = —(roy3)°Qy -

2J = (ropd)’Qy. (21)
Comparison with Eq. (19) gives
= —ma. (22)

Thus it can be concluded that, when q« is sufficiently
small so that terms of higher power than the first are
negligible, |ma| is the angular momentum of the shell
and the rotation is retrograde® for a > 0.
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4 The thin spherical rotating mass shell is by no means the only
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A procedure for generating integral relations satisfied by particlelike solutions of the class of non-
linear field equations A¢ = F(¢) is proposed and used to develop the first few such relations. The
relations are used to reduce the expression for the “energy” associated with the system; as an example,
the case F'(¢) = ¢ — ¢ is treated. It is shown generally that the variational bound to any of the possible
energy values will approach the exact value from above if the trial functions are chosen to satisfy one
of the integral relations, which is satisfied identically by the exact solutions.

1. INTRODUCTION

HROUGH the years various authors have pro-

posed and investigated nonlinear field equations
in attempts to find models for extended elementary
particles.!~® In many cases these equations reduce, in
the simplest static case and in suitable units, to the
form®-

Ag = F($) (=dF/d¢), ey
where F(¢) is some simple, differentiable function
of ¢.7 Various properties of the solutions of the class
of elliptic partial differential equations (1) have been
investigated to date, such as the existence and
uniqueness of the solutions,® their stability,®!! etc.
In Sec. 2 of this paper we establish a scheme by means
of which integral relations satisfied by particlelike!?
solutions of (1) may be generated. One application of
these integral relations, in obtaining alternate expres-
sions for the energy

1 .
=5 [u@sr e @
associated with the system described by (1), is

* This work is part of a thesis submitted by the first author to
the University of Alberta in partial fulfilment of the requirements for
the Ph.D. degree.

t Present address: Department of Physics, University of Florida,
Gainesville, Florida.

1 G. Mie, Ann. Physik 37, 511 (1912); 39, 1 (1912); 40, 1 (1913).

2 M. Born, Proc. Roy. Soc. (London) A143, 410 (1934); M. Born
and L. Infeld, ibid. 144, 425 (1934); 147, 522 (1934); 150, 41 (1935).

3 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1947).

4 L. L. Schiff, Phys. Rev. 84, 1 (1951).

5 H. Schiff, Proc. Roy. Soc. (London) A269, 277 (1962).

¢ V. Enz, Phys. Rev. 131, 1392 (1963).

7 Such equations arise also in other branches of science and
engineering; see, for example, H. T. Davis, Introduction to Nonlinear
Differential and Integral Equations (Dover Publications, Inc., New
York, 1962).

8 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1962), Vol. f1, p. 369.

® R. H. Hobart, Proc. Roy. Soc. (London) 82, 201 (1963).

10 G, H. Derrick, J. Math. Phys. 5, 1252 (1964).

11 G, Rosen, J. Math. Phys. 6, 1269 (1965).

12 In this paper, a particlelike solution ¢ is one for which ¢, its
derivatives, and all physical quantities derivable from them are well
behaved (exist, continuous, and single valued).

illustrated for the most commonly considered non-
linear field equation, for which Fi(¢) = ¢ — ¢2.

Generally speaking, it is not possible to obtain
solutions of (1) explicitly and various approximation
techniques are used. In the case of one dimension,
approximate solutions are readily obtained by numer-
ical integration, while in two or three dimensions, the
variational method is often useful.!® In Sec. 3 we make
use of the integral relations developed in Sec. 2 to
establish criteria under which variational approxi-
mations yield upper bounds to the energy (2) associated
with the particlelike solutions.

2. INTEGRAL RELATIONS

Some integral relations satisfied by particlelike
solutions of equations of type (1) have been obtained
previously®1® with the aid of the energy (2), which is
extremized by these solutions. It is apparent, however,
that these (and other) properties of the solutions
should be obtainable from (1) without recourse to the
energy.

The procedure for obtaining integral relations
consists, in essence, of partially integrating the
identity*

n an 3 __ n_a_i 1 3

ﬁammmdsf%%fwwa(»
fori=1,2,3andn=12,--.In(3) (5, &, &) is
a set of coordinates spanning the region of space
under consideration and A, is the Laplacian operator
expressed in these coordinates. In this paper we
derive some of the integral relations obtainable when
&, are taken to be rectangular Cartesian and the
radial polar coordinates, and the integrations are
taken over all space. First we note that all integral

13 D. D. Betts, H. Schiff, and W. B. Strickfadden, J. Math. Phys.
4, 334 (1963).

14 The use of this identity, which follows from (1), is suggested by
the work of D. J. Morgan and P. T, Landsberg, Proc. Phys. Soc.
(London) 86, 261 (1965).
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relations obtainable from (3) withn =0,1,2,---, k
are also obtainable from (3) with n = k + 1, since the
“order” n of the identity may be reduced by one, by
partially integrating both sides of (3) once and
making use of (1). It is simpler, however, to start with
n = 0. In this case (3) implies, simply,

f $A$ dx = f $FY($) d,

or
[0 @) — @9 i = [ 4P ax.
Using the divergence theorem,'s we obtain
[1wsr + sP@ =0 )

Taking &; to be x, one of the rectangular Cartesian
coordinates, (3) becomes, with n = 1

| bx (0 s = | #x L Fig)
or
[xon (%) dx= | x (F($) — 4FTH) %

Using Green’s theorem on the left and integrating
partially on the right, we get

f -g_qu(x¢) dx = f [F($) — $F(H)] & (5)
X

But
f %A(nﬁ) Px
=fg—‘i(xA¢ + 2%) Px

- f [x 2 r¢) + 2(%)2] Px using (1),

._ﬂ: (8¢) F(d)):' d®x after partial integration.
Thus (5) becomes
2[ (&) ax = [i2r ) - oF(o) s

Similar expressions hold for the other two Cartesian
coordinates, so that

8 =5~
= 3[9ra

= f [F($) — $6F (D1 d%.  (6)

18 For the sake of simplicity we consider here only “localized”
particlelike solutions, for which ¢ and its derivatives vanish at
infinity. The somewhat more general case is treated in G. Darewych,
Ph.D. thesis, University of Alberta (1966).
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When &; = x and n = 2, a relation identical to (6) is
obtained. With n = 3, (3) becomes

focs(Z8) s~ o (e

+ 3(“;ﬁ) (aai?s) FUI 4 pII aaj] &x

Using Green’s theorem on the left, and (1) we get
3 3
6xad’a¢d3 +6 a¢¢d3

2x° 0x
N
+ ($FT — F )Z;if] &
X

Integrating partially on the left,
2 2
o[ 24028 4 22
ox*\ ox® 0x
04\ =
—-6| — —1]d
f axz(d’ +x ax) x

- f xs[ga; ($F' — 2F) — (%’)31?”1 e,
or

of#(50) =+ o[ [3 ()] #>
+6 f s 28 oy
—6 f ($FT — 2F) & + f xs(%%)azrm .

Further partial integration of the integrals on the

left implies that
2 1\2 2
o - of
ox® 0
= 6I(¢F’ — 2F) dx +f ( )Fm .

Finally, using (6) we obtain the relation

JG) o=l -G o
Ox ax* ox

Y]
and similar expressions for y and z. When ¢, is taken
to be r, the radial spherical polar coordinate then,
for n = 0, 1, 2 no new relations are obtained. When
n =3 we obtain, as shown in the Appendix, the
relation

%f(V¢)z d*x = E%f[%rs(.ais)sl:nr

( Z‘f %f + 4¢)F1] Px. (8)
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Still other integral relations may be obtained from (3)
by using higher values of n and other coordinates &;.

These relations may be used, for example, to
obtain alternate expression for the enmergy (2). A
frequently encountered nonlinear field equation of
type (1) corresponds to Fi(¢) = ¢ — ¢3. The integral
relations (4), (6), (7), and (8) in this case imply that
the energy of this system

_1 L et iy
E—4ﬂf[%(V¢)+%¢ 144 &,

may be expressed equivalently as

1 1 1
E =— 2d3 —_— 4d3 —— v 2da’
47rf¢ x 161rf¢ X l2wf( ¢ d'x

®)
E,=—+ (g‘i) d’x (10)
and similar expressions for yand z,
B s [G) e -0
(19

or

[ R

and similar expressions for y and z.

3. VARIATIONAL UPPER BOUNDS

The fact that the solutions of (1) extremize the
energy (2) suggests that a variational principle based
on (2) may be used to obtain approximations to the
solutions of (1).2® If ¢ is a solution of (1) and
v = ¢ + u some suitable variational trial function
(u being an arbitrary but small perturbation) consider
the nature of the bound E(y) to E(¢):

E(y) = E($) + fﬂ f [V Vu + uF($)] &%
+ o [0+ wF)

4 f () dis. (13)

Using the identity V - (uV¢) = Vu -Vé + uAé, Gauss’
theorem and (1), it is clear that the term which is of
first order in u vanishes in (13) and, for |u| sufficiently
small, the nature of the variational bound is deter-
mined by the second-order term

SE = L f [3(Vu)® + 3PF ()] d®%. (14)

¢ Such a procedure has been used'® to obtain approximations to
cigensolutions of A¢ = ¢ — ¢%.
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Since, in general, F(4) is indefinite, so presumably is
the variational bound E(y) to E(¢). Suppose, however,
that the variational trial functions y are restricted to
those which satisfy the integral relation??

f [(V9)? + 6F(y)] d° = 0,

which relation, as is clear from (4) and (6), is satisfied
identically by the solutions of (1). Replacing y by
é + u in (15) we get, to second order in u

J‘i_uZFII(qs) d”x
- - f [V - Vu + 3(Vu) + uF($)] dx.

(15)

Thus, to second order in u, (13) becomes
E(y) = E($) + - f V6 Vudix + L f H(Vu)? dPx.
47 47
(16)

Since ¢ is a solution of (1), it extremizes E, hence the
first-order term in (16) vanishes while the second-order
term is now positive definite. We conclude then, that
if the variational trial function y is chosen to satisfy
(15), then E(y) provides an upper bound to E(¢),
provided |y — ¢| is sufficiently small. It should be
noted that this applies quite generally to all particle-
like solutions of (1) not only the “ground state”
solution [for which E(¢) is smaliest].

4. CONCLUSIONS

We have proposed a scheme by means of which
integral relations, satisfied by particlelike solutions
of a wide class of nonlinear field equations (1), may
be generated. We have used this scheme to obtain
the first few such integral relations. One use of these
integral relations, in providing alternate expressions
for the emergy associated with a system described
by (1), was demonstrated for the particular case
Ad = ¢ — ¢ The variational bound to the energy
associated with a particlelike solution of (1) was
considered, and it was shown that if the variational
trial functions are chosen to satisfy one of the
integral relations, then the variational energy will
approach the exact result from above.
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17 As is evident from the work of Schiff® and Derrick,!® this is
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sty R e e
J.@' —(A¢) d’x ’“f@‘ S Fi($) &, (AD) * B gbgi) * 6r2¢3_?‘4-
o ( g T4 _3 gi + 4¢»)A¢} dx
5300 =8(33) =2a(3) + 22 [ o(28fe + 202228
~Bag ;Z"T‘f _ ga;f %g%% + ($FT — FY g—r—?} Fx. (A2

Integrating by parts,
Making use of Green’s theorem, and noting that for f , (6% 6¢ + 4 a4¢) _ J‘r ( 4 aqu) Px
or

the localized, particlelike solutions considered here, ar® or ar®
the surface terms vanish; we find that Pe P4
= —-4fr¢> dix,
3A a ¢ d3 2 3 2
¢r J(aqﬁaqﬁ éaé) =f (¢a¢)d3x
P 24 ort or or\’ or
= —L{rPA 6r*—— 4 12 &’x, 2
et ezt

f ¢r2A(g2Tf) d* gj‘ﬁ( r’Ad + 4r qu + 696) e f % p g;j: Px=1 f ¢ ¢ d(r®) dQ

SERE

f¢rA(a"S) &x fa"s( rag 4222 42 ¢)
or or where r? dr dQ = d®x. Thus (A2) becomes
Thus, (A1) becomes f [ 3?5 + 4 ﬂ Ad Px
8*¢ 04 9*¢ 94 624) D\
P2 — 4r — 36 = g I, x| g8
f[6 o oo 368 f [ ($F! — 2F) — (ar)F J Px.
4 Using (1) and integrating partially on the right,
+36(g:;s)+7z¢a¢+62¢a¢ 8 grating p y g

- f [ﬁaz—f 322y 4¢]F1(¢) dx
+ {r g—f g f + 18r a¢> 24«#}&96:] d* or =fa[10(wI s B(gqs) Fm} N
F

0 040’ ¢
3 v 1341 I
f (’b[(ar ) F™+3 or or? Fr+os or ] d’x Finally, using (6), we obtain the relation (8).
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A method for determining the quantum correlation functions of the noninteracting particle system in
thermal equilibrium is developed. It is designed to reduce the labor involved in treating the large number
of permutation operators of the symmetric group that occurs. An alternate form of the n-particle cor-
relation function is obtained in order to simplify computation. The London-Placzek formula is derived
as a check. The error in Kirkwood’s superposition approximation for this system is investigated, and
the exact relationship between the two- and three-particle correlation functions is found. Finally, a
method determining the pair correlation function in the Hartree-Fock approximation of a pair-inter-
acting particle system at a finite temperature is presented.

L. INTRODUCTION

N recent years, many important studies of the many-
body problem of quantum statistics have been done
successfully by using the concept of the grand canoni-
cal ensemble on the basis of the method of second
quantization in quantum field theory. In their study
of the pair correlation function, Fujita, Isihara, and
Montroll* have, by using the idea of “torons” intro-
duced firstly by Montroll and Ward,? shown that the

pair correlation function in the grand canonical .

ensemble® can be expressed in terms of the two-body
Green’s function corresponding to the scattering in
reciprocal temperature-position space. Subsequently,
Fujita has, in a simple and straightforward way,
proved again the validity of this theorem by using the
familiar and easier procedure of second quantization
in the Schrédinger picture. According to him, the
form of the pair correlation function g(r;ry) [Eq. (2.8)
of the first of Ref. 4] is, in terms of the annihilation
and creation operators ¥(r,) and ¥*(r,) in the con-
figuration representation, given by

g(riry) = (V/N)* Tr (¥ ()W (r)e PP (r) P ()]
+ Tr(e?®). (1)

Here the trace is taken in Fock space, and £ = H —
uN with the Hamiltonian operator H of the system
having the total particle-number operator N. N is the
average of the total particle number, i.e.,

N = Tr(e?°N) = Tr (¢ #0),

18, Fujita, A, Isihara, and E. W. Montroll, Bull. CL Sci. Acad.
Roy. Belg. 44, 1018 (1958).

*'E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).

3 There is no distinction between the pair correlation functions
of canonical and grand canonical ensembles in the calculation of the
thermodynamical property of the system in thermal equilibrium.
See T. L. Hill, Statistical Mechanics (McGraw-Hill Book Company,
Inc., New York, 1956), p. 236 et seq. )

4 S. Fujita and R. Hirota, Phys. Rev. 118, 6 (1960); S. Fujita,
ibid. 115, 1335 (1959).

and V, the volume of the system. The constant § is the
reciprocal temperature parameter of the system
defined by g = (KT)~! with the Boltzmann constant
K and the temperature 7. The ¢ number u is the
chemical potential.

Equation (1) is also consistent with the definition
of the pair correlation function given by Lee, Huang,
and Yang,® and can be easily extended to give the
n particle correlation function taking the form

glray - x,) = (VIN)" T [¥(r,) - - - ¥ ¥(ry)
X PP E)FHE) - FHE)] + Tr (@)
r&N).
In this paper, we show that Eq. (2) leads to

glryry - - - ry)
= (XY T {fPan — 11
=n|—= <l'1,l‘2, ’rnl Sn]._.[{eﬂ 4 n}
N i=1
9r2sr1> (3)

in the noninteracting particle system, where S, is the
symmetrizer for bosons, or the antisymmetrizer for
fermions,® and 4,(A=1,2,---,n), the n single-
particle Hamiltonians corresponding to the n particles.
The numerical constant 7 takes +1 for bosons and
—1 for fermions. Next we very simply determine the
explicit form of the n particle correlation function for
the noninteracting spinless particle system from Eq.
(3) with the application of the symmetric group of
order n!. Finally, the order of the accuracy of
Kirkwood’s superposition approximation is investi-
gated for the noninteracting particle system. Our theory
will also be applied for finding the pair correlation
function in the Hartree~-Fock approximation in the

x‘rn’..-

5 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1136,
Eq. (42) (1957).

6 See S. S. Schweber, An Introduction to Relativistic Quantum
Field Theory (Row, Peterson and Company, Evanston, Illinois,
1961), Eq. (70) of p. 133 and Eq. (99b) of p. 140.
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temperature region < oo in the interacting-particle
system with non-hard core potential such as the
screened Coulomb potential of electron gas.

II. A PRELIMINARY THEOREM

Let [j;) be the normalized energy-eigenket vector
of the Ath single particle corresponding to the energy
eigenvalue ¢;,. As is well known, the Hermitian
scalar product between |j;)’s and the position eigenket
vector |r;) is then given by

Galdd = Byp50 (] = ewpt (&)
with
k; = 2al,, V-4,
Here 1;, is the lattice vector of the quantum number

for the momentum of single particle, and the relation-
ship between two quantum numbers j; and I;, depends
upon the shape of the box V.

The Hermitian scalar product between two direct
products given by

|l‘1, Ig,* ’ rn) = H Iri.>’
A=1
Ij19j29' .’jn>E:!_:1;|jA>’
is defined by
n
(ry, Iy, "rnljn"":j23j1>5;!.___|_;<r).,j}.>’

which is normalized to unity. Now we introduce the
symmetrized (or antisymmetrized) position-eigenket
vector |r) and energy eigenket vector |J) of n particles
by the following definitions:

Ir> = lrer e rﬂ) = Sn Irlyrz’ L),

W) = 1jjeJu) = Saljrsjer s jud
We can construct the Hermitian scalar product be-
tween them by noting S% = §,,, to have

1 (det((r;] j,)

<"|J> L3 O -r,,lj,,--'jzj1>=-—x
nt \pet((ra|).)
. - N )
with the normalization condition given by
|3 = Gudadnldn e Joo)
(! ‘)“}ZI (1 =355
- _ 6
(n‘) 1}:-[ za,).jv ( )

respectively. “det” represents ““‘determinant,”and “pet,”
“permanent” of the elements (r;|j,) (4, v =1,2,3,
-+, n), valid for fermions and bosons, respectively.
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Equation (5) is the symmetrized (or antisym-
metrized) wavefunction of »n identical, indistin-
guishable particle systems with nonnormalization to
unity. Therefore, its completeness condition is

given by
A
; amn- I (identity), 0
and the operator f(h,, hs, * * -, h,) given by
L fGhs hey - -, by) [3) = F(J) (known)  (8)

has the following expansion form in terms of the
projection operators |J){J|’s:

FQJ
f(hl,hZ’.." 2|J> ()

(| I)*
Theorem: Let (aj, , a;,) be the pair of the creation

and annihilation operators in the momentum repre-
sentation. For both fermion and boson, we have then,

C 1IN )

niI | I IT {ef ™ — p}™! = Tr (e 547 4,)
A=1

+ Tr(e*), (10)
where the trace is taken in Fock space, and (J | J)is
defined by Eq. (6), and 43 =TI 145, so that
45 = (1349

Proof Case 1: ji # j, %+ # j,. Let us express

the numerator in the right-hand side of Eq. (10) by
Q(n). We have then,
Q(n) = 5 Tr (e " a?; ajaf - -af_

X (a;,af, — Da;, _, -+ a;a;)
by using the commutation, or anticommutation rule
given by afa;, = n(a; a} — 1). Using the commuta-
tion rule? given by

ea; = eflnrg, o, (11)

and a}a; = na,af,, a;a;, =mna;a, (A=1,2,:
n—1), and the trace theorem; we can easily lead this
equation to the following recurrence formula:

Qn) = {'u* — 9}~ Qn — 1),
and, therefore,

Qn) = Tr (%) ﬁ {eflen — 1t (12)
=1

From Egs. (12) and (6), we see that both sides of Eq.

(10) are equal to each other, showing that Eq. (10)

is valid for both fermion and boson when
jliéjz?é' '#jn-

? C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 408,
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Proof Case 2: The several j’s among (jy, * *
equal to each other.
(@) Fermion case: For example, letf, = j, y="'-*,
we then have

* Ju) are

' THE LEFT-HAND SIDE OF EQ. (10) =
in accordance with Eq. (6), while

THE RIGHT-HAND SIDE OF EQ. (10)

= —~BL+ ... gt 2
= Trle " aj, - -aj _[(n;,

in-g - nin)ain—z o ah]
by using the definition of the occupation number
operator njn = g} a; and the commutation rule of
n; a; = (n;, — 1) valid for both fermion and
boson. Thus noting that nf = n; for fermion, we
see that Eq. (10) is always vahd for fermion irrespec-
tive of the values (j1j;° * * j.)-

(b) Boson case: Let (jij,*
thesamej’sof my,my, -, my,"
tively, i.e.,

* ju) be composed of
- - in number, respec-

M=z

(13)

where some m, are zero, and, also, may be 1. We
collect together the a*’s and a’s with the same j’s,
referring to the commutation rule of boson. We have,
then,

ml= n,

»
]

m~1

o =1 [ T T, - 9) ] a0

8=0

where we have defined

ﬁ (n;, — s) = I (identity).

Splitting the last factor (n; — m, + 1) of the operator
— s5)into two parts and using the definition
Eg.

my~1 ?I
=0
of the occupatlon number operator n; = afa; ,

(14) is changed into the following form:

Q(n) noe TI‘ [e_ﬂﬁnh(njl i 1) e (nj1 - ml + 2)0“};0,-1

n my—1
< I {1 9)]
—(my—DTr [e“”:nh(n;;1 — 1)y, —m+2)

Now, we make the following procedure: (1) We re-
place a;a; = a;a} — 1 in the first term to combine
the part of the coefficient (—1) with the second term.
(2) In the first term, we bring the destruction operator
a;, at the position right after the operator £ by

using the commutation rule of n;a; = a;(n; — 1).
(3) We use Eq. (11). (4) We bring the destruction
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operator a; to the last position by using the trace
theorem. (5) We bring it to its original position to
combine again with the creation operator 4j, to form
the occupation number operator n; by using the
commutability of a; and T 1_2{[[8_0 Y(n;, — 5)}.

After this procedure we obtain the following
recurrence formula:

Qn) = m {9 — 1}71Q(n — 1).

The same procedure continues (m; — 1) times for
the remaining a; of (m, — 1) in number, to give

Q(n) = mll{eﬂ(e,-l—n) — 1}"’"‘.(2(?1 — m1)~

Next, we carry out the same procedure, also, for
a;,, 4;,, and so on. Then we finally arrive at

Tr(e*Y H S 7 L— ,

{eﬂ(m-n) 1}m

Q(n) = (15)
where the m,’s satisfy Eq. (13).

From Egs. (15) and (6), we see that both sides of
Eq. (10) are equal to each other, showing the validity
of Eq. (10) even for this case of bosons. Thus, we
have proved that Eq. (10) is always valid for both
fermion and boson.

The above procedure of proof is useful, also, for
finding the grand-canonical ensemble average of an
observable expressed in terms of the destruction and
creation operators. For example, the grand-canonical
ensemble average of the quantity n™, i.e., the m powers
of an occupation number operator », is found by a
recurrence formula given by

Tr (e——ﬁf:nm) = (m - 1)q1+ 1 Tr (e-ﬁﬁnm-i)
q a—
__4q __(._:_1_)’_.. B8 mes
q—IE( Wm—s— i TE@Tm)

(g =) (16)

and, in the case of boson,

Tr (¢ #tn) = Tr (D),
Tr (e n?) = 1T~ +1 (e), amn
(@—1»
Tr (%0 = _q__iﬂ_q_—t_l Tr (%), etc.
CRaBY
In the case of fermion, we have simply
Tr (e 0™ = [1/(g + DI Tr(e*)  (18)

for all m > 1, in accordance with the special charac-
ter of the occupation number operator given by
n™ = n. All results obtained above are in agreement
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with those obtained at an earlier time by Schrédinger
through his c-number theory.?

Using Eq. (9), we can write Eq. (10) in the following
alternative form:

nt TT {0 — g
A=1
Tr (e** 45 A;)
(3| Iy
III. DERIVATION OF EQ. (3)

The well-known Jordan-Wigner rule is given by®

= (Tr (e*"’l))—l.f_ B dl. (19

() el = (| ﬁII‘F(rA), (20)

where (0] is the bra vector of the vacuum state. We

expand the operator JT7_,'¥'(r;) in the form given by

I‘I ¥ie) = 3 dstr | D), Q@)

and determine the c-number coefficient C(J) by using
Eq. (20). From Eqgs. (21) and (20), we have

(Y (] = 31 C@) (0] 4. (22)

It is easy to see, from the property of the destruction
operator a;, and Eq. (6), that

Ol 45 = J| (n)%. (23)

The combination of Eq. (22) with Eq. (23) requires

; [J) C(J) (J| = I (identity). (24)

We compare Eq. (24) with Eq. (7) to have C(J) =
1/(J | J), and therefore, Eq. (21) is written as

) = 34| H+I|D @9

The Hermitian conjugate to Eq. (25) is
H‘I’u’(l'nﬂ_z) = ; J|DA7 =T (26)
We substitute Eqs. (26) and (25) into Eq. (2), to have

CUSERE )
= (VIN)"(Tr () 2T [e* 43 Ayt | 3)J | 1)

= {@ ]| DA | I,

We note here, that all parts behind the operator a;.
is a ¢ number to be taken out from the trace parenthe-
sis, and

Tr (e A345) = Tr (e " 43 45)05 5.

8 E. Schradinger, Physik. Z. 27, 95 (1926), Eq. (25) et seq.
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Thus, it reduces to
Tr (e ? 45 A;)

Vy —pEN -1
= | T 8 J
(N)<rl{ eI @Iy

We compare this equation with Eq. (19). We then
have

grry - or,)

N ,,!(%)"m }jl {f ") — it )

= nl(-‘é) (0 PR N S, H {eﬁ(h;'—n) _ ,'7}—1
N i=1

I, ). (27)

This proves that Eq. (3) is correct. Since the quantity
g(r,ry - - -1, )V " represents the statistical probability
of finding simultaneously n particles (among N par-
ticles) per unit volumes at the n points (r;, rp, * - -, 1)
in the volume ¥ irrespective of what the remaining
other (N — n) particles are doing; the operator
P(123 - - - n) given by

P(123---n) = ;—L ﬁ {efrimm) — 31 (28)

J l r).

X Irn,..

can be interpreted as the statistical probability density
operator correlating n particles with each other. Thus,
the n particle correlation function is simply regarded
as V" times the expectation value of the statistical
probability density operator P(123 - - - n) of Eq. (28)
at the state |r), or the diagonal element of the repre-
sentatives of the operator P(123---n) in the sym-
metrized configuration representation of n particles.
Therefore, the statistical probability density
Sk, -+ k,) of n particles in the momentum space
(or representation) must be given by

Skiky - - k,)
= (k| P(123 - - - n) |k)

n
= nIN Ky, Ky, Kyl S, TT (P9 — gy
A=1
X Ikn, e ,kz, k1>

= (N T | DHTT {95 — 5}, (29)
A=1
with the definition of Eq. (6). Equation (29) can be
regarded, also, as the function proportional to the
n particle correlation function in the momentum space.
In this way, we can determine the correlation function
in arbitrary representation by finding the correspond-
ing expectation value of the operator P(123 - - - n).
The reasonableness of Eq. (28) can be understood
also by the following elementary discussion: As is well
known in the elementary c-number theory of quantum
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statistics, the statistical probability p; of finding a
particle in its energy eigenstate | /) is given by

py= N7l — g}, N = F{fo —
’ (30)
Since p; can be regarded as the expectation value of
an operator P(1) at the state |j), we must have

GIPAY Ly = py = (I N7 M — )t 1)),
This equation leads to

P(1) = N7 —py=, 31
since it is valid for an arbitrary element |j) of the
orthonormalized complete set of the energy eigenket
vectors| j). Therefore, the statistical probability density
operator P(123---n) of finding simultaneously »
identical, indistinguishable particles is given by n!
times the product of » individual statistical probability
operators P(A) (A= 1,2, -+, n), ie,

P(123- -+ n) = n! T] P(A),
A=1

by assuming the validity of the theorem of probability
operator product,® where the factorial n! comes from
the identical and indistinguishable character of n
particles. The combination of Eq. (31) with this
equation gives Eq. (28).

IV. EXPLICIT FORM OF THE CORRELATION

FUNCTION

We show explicitly the correctness of the above
formalism by determining the correlation functions
and comparing them with the results obtained by
other methods. In our subsequent discussion, an
element of the symmetric group of order n! denoted

by
(1 2 e n)
jl j2 “ e ]n

represents an exchange operation which replaces 1
by j1, 2 by j,, and so on. We also use the identity
operator I taking the following form:
I= 3  |k,ky, kK, -
klykzy . ,kn
in the propagation-vector (or momentum) repre-
sentation |k;, ks, - - -, k,,) of n particles. Note that

<l'1,l'2,"',l'n| ( n) |kn"”ak2’kl>

i Je 0 a

T k2’ k1| (32)

= H (r ] k;) (33)
with (r, | k,) = (r; | j2) defined in Eq. (4).

(@) One-particle correlation function: The one-
particle correlation function for any kind of system
is unity. Our foregoing formalism leads correctly to

% Actually, Eq. (10) guarantees this statement.
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this universal result. According to Eq. (27), the one-
particle correlation function g(r,) for an ideal particle
system is given by

) = fim (@l {0 — gy,
Vo
since we have S; = I (identity) for one particle. Now,
we insert the identity operator of Eq. (32) withn =1
between the ket vector |r;) and the statistical prob-
ability density operator {ef*:—#) — y}~1 and note that

hy |ky) = okf [ky),
where « is the reciprocal of Schrddinger’s constant
defined by « = /4%/2m for the single particle having
mass m. Then, using Eqs. (4) and (30), we have

gr) =1
in agreement with the above statement.
(b) Two-particle correlation function: Likewise,
from Eq. (27) the pair correlation function g(r,r,) is
given by

(34)

g(riry)
1A ¢ Bl 4
= 2!1%1—1;!1 (—I\_—f) {ry, Iyl H {e TS 98 A%
Voo

If we insert the identity operator of Eq. (32) with
n = 2 between two operators {ef*i-*) — 5}—1 and S,
using the explicit form of S,:

=2l 26 )

Then, we have

z ﬁ {eﬂ(ak;f—u) _ ,'7}—1

(ky,kg) A=1

V 2
=i —| X
g(ryrz) Jim ( N)

Vo

1
X {'I‘;é + <l'1,l'2l ky, kp)
1 2
x (K, kol (2 1) |r2,r1>}

=1 + ﬂ{L,,(l'g - rl)}z’ (35)
where L,(x) is the London-Placzek function defined by

L(x)=N ‘lﬁk: {ePleR*-m) _ pr—tpikx 36)

It is obvious that 2 > g(ryr;) > 1 for the boson
system, and 0 < g(r;ry) < 1 for the fermion system
from Egq. (35). We note, here, that the London-
Placzek function defined by Eq. (36) is a real function
of the variable x, since we have always the pair terms
corresponding to the pair of (k, —k) in the summation,
and as (N, V) — (o0, ) it approaches to the function

given by
_ 1 ® k sin (kx) _
L) = 5o L ko =Y. (7

10 Note, in this derivation, that the number of states per the
volume element 4%k in k space is given by (27)~*Vd®k.
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TaBLE I, The structures of classes of the symmetric group of order 4!.

3rd class

4th class 5th class

1st class 2nd class
stsggtltl;e (14,2°, 3, 4%) (13,24, 3,49
P + -

1 6

v

(1°,2%,3°, 4%

+
3

1, 2% 3%, 4%)

6

(1, 2%, 34, 4%

+
8

Total
24

Equation (35) is the well-known London-Placzek
formula obtained previously by other methods.!*-13

(¢) Three-particle correlation function: The three-
particlecorrelationfunctiong(r,ryrs)issimilarly given by

V 3
(-I_V-) (P, 1y, 1y

3
% H {eﬁ(ah;'-ll) - 77}”153 [rg, rs, )
i=1

with the explicit form of the symmetrizer S; given by

(RS R

=3\t 2 3 13 2

123\ (123 [l 23
+7’(2 1 3)+(2 3 1)+(3 1 2)}

We obtain the following form of g(r;r,r;) by using the
similar procedure used in (a) and (b):
gryrars) = 1 + nL,(r; — r2)* + nL(r, — 15)

+ nL,(r; — r)?

+ 2L, (ry — 1)L (¥; — r3)L,(r; — 1;), (38)
which is also in agreement with the result obtained
by another method.* We observe, in the right-hand
side of Eq. (38), that the first term corresponds to the
element of the class with the structure of three unary
cycles. The next three terms correspond to the three
elements of the class with the structure of one unary
and one binary cycle. The last term corresponds to
the two elements of the class with the ternary cyclic
structure of the symmetric group of order 3!.

(d) Four-particle correlation function: In order to
find the four-particle correlation function g(ryr,rsr,),
we first analyze the structure of the symmetric group
of order 4! = 24. The number C(4) of distinct classes
of this group is equal to the number of positive
integer solutions to the algebraic equation x, + 2x, +
3x3 + 4x, = 4. This equation has five kinds of
positive-integer solutions. Therefore, C(4) = 5. We
use the conventional notation (1%, 2%, 3%, 4%) with
the parity (— 1)*** in representing the cyclic structure

g(rrery) = 3! lim
N
Vo

3

11 F, London, J. Chem. Phys. 11, 203 (1943).

12 G. Placzek, Proceeding of the Second Berkeley Symposium on
Mathematical Statistics and Probability (University of California
Press, Berkeley, California, 1951), p. 581.

13 See Appendix I1I of the second paper of Ref. 4.

M F, Lado and T. Dunn (private communications).

of each class. As is well known, the number v of
distinct elements contained in each class is given by

4
y = 4!/1‘[,'%:,.!.
j=1

The cyclic structure, parity p, and number » of
distinct elements of each of five classes are as given
in Table I.

Let us introduce a notation defined by

L,,(l 2 3 4

j 1 .] 2 .] 3 .] 4)
= L,(r, — r;)L,(rs — r;)L(r; — r; )L, (ry — 1,).
The function g(r,r,rsry) is then given by
1 2 3 4

NMM=X%WW+ ,,),m)
J1 J2 Js Ja

i.e., the summation over all 24 elements where 7° =
stands for even parity and %, for odd parity of the
permutation (j, j»jsj,). Referring to Table I, we divide
Eq. (40) into five subsummations taking the form

(1 2 3 4)
1 Je Js s

(39

6
g(rrarsr) =147 Z L,

2

3 1 2 3 4

L |

3 J1 J2 Js Ja
8 1 2 3 4 8 1 2 3 4
+ZL,,(. o .)+772L,,(. o )
4 Jv J2 Iz Js 5 Ji J2 Js Ja
(41)

where > denotes the subsummation over all » dis-
tinct elements of the Ath class. From the cyclic struc-
ture of each class from A = 2 to 4 = 5, each of the
subsummations is easily found. The result is
g (ryxar3ry)
=1+ W{Lq(lﬁ - 1)+ Ln(rl —13)? + L,(r; —r)?
+ L,(ry — 13)® + L,(r; — ry)% + L(r; — )%}
+ {L,(ry — 1)2L,(rs — 1)? + L(r; — 1y)°
X L(ry — 1% + L(x, — r4)2L,,(r2 —ry)?}
+ 2{L,(xr; — ra)Lq(fa —r)L,(ry — 1y)
+ L,(r3 — r)L,(r, — r)L,(r; —ry)
+L,(xy —r)L,(r; — 1)L, (r; — 1)) + L(r; —1p)
X L,(r, — ry)L,(ry — 1)} + 2, {L,(r, —1p)
X L(xy — 1)L, (ry — r)L,(ry — 1)
+ L,(ry — 1)L, (x; — ¥)L,(r; — 1)L, (r, — rg)
+ L,(r, — r)L,(r; — xy)L,(r; — r)L,(ry — rz()}
42)
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(e) The n particle correlation function: The n
particle correlation function defined by Eq. (27)
reduces to

g(rr " o r,)
(VY n \
=lim {—= hlaka™—n) _ 31
N”w(N) (khkz.z" *kn) E { 77}
| el

x Vo exp (i3 ki n) -G ko K
A=1
X Z(il)pp |l'”," : ,r2’r1> (43)
P
by the use of the identity given by Eq. (32). Further-
more, taking out the operator >, (+1)” before the

coefficient (¥/N)" in Eq. (43) and referring to Eq. (36),
we have then,

gy rr) =1+ Z(i)pﬁLq(rl — pry)

=1+2(17",or71)L.,(.1 2 3 4)
JvoJa Ja ctt n
(44)

We follow the same idea as that for the derivation of
Eq. (41). We have then,

eln) | 1 2 3 cvv o p

s r) =1+ 33 L( ).
s=2 s Jv Je Js " Ja

(45)

where c(n) is the total number of classes in the sym-
metric group of order n!, and X%, the subsummation
over all v, distinct elements contained in the sth class
with its parity p,. The number v, is given by

=/ " 5% 3ix=n (46
£ o=
in the sth class with the cyclic structure of
(1=, 25 e e,
and the parity p, is given by

ps=x;s)+x&s)+x‘(;s)+..._

18)

The total number ¢(n) of classes is equal to the total
number of the positive integer solutions (x{", x{,
x{®, -, x{?) to the algebraic equation given by the
second of Eq. (46). Therefore, if we find all positive-
integer solutions of this algebraic equation, the n
particle correlation function g(r,r, « - ' r,) of Eq. (45)
is completely determined in its explicit form in terms
of the London-Placzek function by analyzing the
cyclic structures of all classes of the symmetric group
of order n!. The systematic table of the cyclic struc-
tures can be found in many references by which we
can find the correlation functions for n = 5, 6, and
so on.
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V. KIRKWOOD’S SUPERPOSITION
APPROXIMATION

It would be instructive to see how much Kirkwood’s
superposition approximation agrees in the case of the
ideal particle system. Kirkwood’s superposition
approximation states that!®

8(rirsry) ~ g(ryrp)g(rors)g(xsty). 47
Let us express the right-hand side of Eq. (47) in terms
of the function L,(x) defined by Eq. (36) by using the
London-Placzek formula of Eq. (35). It is
8(ryrp)g(rors)g(rsry)

=14 nL,(r; — r)* + nLy(r, — 1y’

+ ’7Lq(r3 — 1)k + L,,(rl - r2)2L,,(r2 — 1)

+ L,(xy — x3)2L,(rs — ry)? + L,,(l'3 - 1)?

X Ly(ty — 05)* + 7L (1, — 12)°L,(r; — 15)°

X Ly(rs — Ty 48)
Thus, the comparison of Eq. (48) with Eq. (38) shows
that the last term of Eq. (38) is approximated by the
last four terms of Eq. (48) in Kirkwood’s super-
position approximation.

We can find the exact relationship between the pair
correlation function and the three-particle correlation
function by eliminating the London-Placzek function
L, in Egs. (38) and (35). From Eq. (35) we have
Lq(rl - l.v)z = 'l']{g(l';., rv) - 1}

(Av=123;1%).
When this is substituted into Eq. (38), we obtain

49

g(rrars) = gro + Zos + g + 2
X [{n(g1e — 1)(ges — D(gan — DY — 1], (50)

where g;, = g(r,, r,). This equation is exact for the
noninteracting particle system.

The exact error of Kirkwood’s superposition
approximation is, thus, given by the following
function E, (g4, g2, £3):

E,=gp1t8t8
+ 2[{n(g1 — (g — 1Xgs — ) -1- 818283
(5D
with the further definition of g, = gu, g, = ga1, and
g3 = g1 This error function E, varies with the changes
of the values g; (j=1,2,3), or ry=|r3—ry,
ry = |1, — 14/, and r3 = [r, — xy|. The pair correlation
function g, varies in the open—closed range (1, 2] for
bosons, and in the closed—open range [0,1) for
fermions, with the change of the pair distance r; in its
closed-open interval [0, o) as stated already in Sec.
IV(b). For example, at r; =0 (j = 1,2, 3), we have

15 J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
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g;=2and E, = —2for bosons,and g; =0,E_=0
for fermions, respectively. Therefore, Eq. (47) is, for
fermions, correct at the generic configuration where
three particles come simultaneously together at a
point, while incorrect with the large error —2 for
bosons. At the generic configuration where g; =
g2 = gz equal to 1.5 for bosons, and 0.5 for fermions,
we have E, = —0.167- and E_=0.082-:
respectively, showing that the error for bosons is much
larger than that for fermions as in the previous case
of r; = 0. However, at a large distance of r; ~ oo,
ie, gi~1(j=1,2,3), we have E, ~ 0, to show
that the Kirkwood’s superposition approximation is
effective in the large distance region for both bosons
and fermions. It seems, from the above discussion,
that Kirkwood’s superposition approximation is, as
a whole, more effective for fermions than bosons.
Next, we are interested in finding the generic con-
figuration where the error function of Eq. (51) attains
its maximum or minimum. This is simply an ele-
mentary extremum problem. The values (g, g2, £3)
for this extremum are found by the roots of the sim-
plified algebraic equation g3+ g2 — g, — (1 + ) =0,
and g, = g, = g;. After a check of the condition for
the maximum, or minimum, we obtain the following

result: The error E, attains at its maximum E, =

0.0412:-- at g, = g, = g = 1.205 - - for bosons,
while at its minimum E_ = 0.0901---at g, = g, =
g3 = 0.618 - - - for fermions, respectlvely Therefore,

the ranges of the errors are given by —2 < E, <
0.0412 - - - for bosons, and 0 < E_ < 0.0901 - - - for
fermions, respectively.

This incorrectness is not a surprising result, because
this approximation has, without any statistical-
mechanical points of view, been introduced originally
by Kirkwood*? only for the purpose of simplifying
the mathematical manipulation concerned with the
hierarchy of the exact coupled integral equations for
the determination of the classical pair correlation
function, as pointed out by Fisher.!¢ Therefore, it is
desirable, on the basis of Eq. (50), to suggest the
following approximation:

giza RS 812 + go3 + gn
+ 2[{n(gie — D(gks — g — D} — 1] (52)

in the weak-mteractmg particle system, where g, =
g'(rrory) is the exact three-particle correlation func-
tion, and g, (i,j = 1,2, 3; i # ), the corresponding
exact pair correlation functions of the system. This
new approximation would give a better answer than

* 1. Z. Fisher, Statistical Theory of Liquids (The University of

Chicago Press, Chicago, 1964), p. 131 et seq.
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that of Kirkwood’s superposition approximation.
The proof is as follows:

Let us suppose that a weak interaction is coupled
pairwise between all particles of the system under
consideration. Then, the form of the pair correlation
function g; (= gu5, 8a1»> &12) i changed by a small
amount from its original form g, into g; = g; +9g;
with dg; — 0 as the interaction goes to zero. We can
safely assume that the function g, is split into
two parts of the form

82 = O(g1, 83, 83) + 00

with a certain function ® going to the form ©, given
by the right-hand side of Eq. (50), and 60" — 0, as
the interaction goes to zero, where 00’ is very small
compared with ®, or ®,, and also may generally
contain the higher-order (than g;,;) correlation
functions coupled with g; (j =1, 2, 3), just as in the
classical case. Then, the right-hand side of Eq. (52) is
expressed notationally by Oy(g;, g,, ;). and the error
function E, for the new approximation of Eq. (52) is
given by

E, = 0O(g; + 9g;) + 00" — O(g; + dg,).

Let us make the Taylor expansion of this function E,
with respect to the variation dg,. We then have

E, = 00(g,;) + 60’ + [060(g,)/0g,10g;
+ (the higher-order terms than the first order dg;).

(53)

Since all the terms below the third terms in this
expansion are, in general, higher orders than the
first two terms, we have, in first-order approximation,

E, ~ 00(g,) + 00, 4

On the other hand, the error function E, for the
Kirkwood’s superposition approximation is given by

E, = O(g, + 6g,) + 60’
We add

3
- I_Il (g; + dg))-

= —0,(g; + 0g,) + Oyg; + dg))

to the right-hand side of this equation, and then,
make its Taylor expansion with respect to dg;. We
obtain, then,

E, = E, + 00(g;) + 60’
+ (9E,[9g,)0g, + (higher-order terms),

where E, is defined by Eq. (51). In first-order approxi-
mation, we have, therefore,

Ey ~ E, + 00(g;) + 80’ + (3E,[0g,)0g,, (55)
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to show that the error E, accompanies always a
definite value E, (the same order of g; as seen pre-
viously) in addition to the small value represented
by all the terms below the second term of Eq. (55).
The comparison of Eq. (55) with Eq. (54) shows that
the previous statement can be recognized.

In closing this section, it should be pointed out
that an arbitrary n-particle correlation function in
a noninteracting particle system can, in general, be
expressed in terms of the corresponding pair correla-
tion functions of 3n(n — 1) in number. This statement
is guaranteed by the last discussion of Sec. IV.

VI. THE PAIR CORRELATION FUNCTION
IN THE HARTREE-FOCK APPROXIMATION

If the Hamiltonian operator of the single particle
is the function «(p) of only the single-particle momen-
tum operator p, ie., the energy eigenvalue of the
single particle is given by a function (k) in the
noninteracting particle system, the London-Placzek

function of Eq. (35) takes, then, an extended form
given by

Lr) = 2a7%p" f d’ke* [P — )7L (56)

As is well known in the Green’s function theory of
equilibrium statistical mechanics by Martin and
Schwinger,’” the function e(k) is the Hartree-Fock
approximation of a pair-interacting system is found by
the solution to the following integral equation:

) = A + p0) + 1(2m) * [ Kk~ K)

X [ — T, (5T)
where ¢(k) is the Fourier transform of the pair
potential ¢(r), i.e.,

800 = [ derrgte),

and ¢(0) = ¢ (k = 0). For example, in the electron

gas with the screened Coulomb pair-potential given by
é(r) = e* exp (—or)|r

(e = electron charge, ¢ = a parameter),

Eq. (57) takes the following explicit form:
e(k) = ak® + dwpe’/d®
—e2(21rk)_1f x[efe@=1 4 117 1n [{o® + (k + X))
0

<+ {® + (k — x)*}1dx. (58)

In this sense, the Hartree—Fock approximation can
be regarded as an operation making the single-
17 P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959),
Eq. (5.44); or L. P. Kadanoff and G. Baym, Quantum Statistical

Mechanics (W. A. Benjamin, Inc., New York, 1962), p. 26, Eq.
(3-29).
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particle Hamiltonian of an interacting particle system
be a function of the single-particle momentum only.

An iteration method would be applicable for
finding the solution e(k) to Eq. (57) by assuming that
the iteration series and the value ¢(0) are convergent.®
This is easily done numerically also by the Fortran
program of a computing machine, even if the Fourier
transform ¢(k) is a complicated function. The sub-
stitution of e(k) (known in this way) into Eq. (35)
through Eq. (56) enables us to determine the pair
correlation function g(ryr,) in the Hartree-Fock
approximation of a pair-interacting particle system.

The method presented in this section is useful for
the determination of the Hartree-Fock energy in
finding the correlation energy at a finite temperature
in an interacting system with a non-hard-core pair
potential.

Finally, it should be mentioned that Eq. (27) can,
also, be applied for the noninteracting particle system
placed in a stationary external potential field. For
example, in the case of pair correlation function,
it is done simply as follows: We insert the identity
operator I constructed from the simultaneous energy-
eigenket vectors |j, j’) of the two commutable
Hamiltonian operators h;, and h, corresponding to
their energy eigenvalues «(j) and (§'), i.e.,

I'= j}i: 1, 3485 3l

between two operators [ef®i-#) — »]71, (A =1, 2),in
Eq. (27), and then, step the same procedure as done
in Sec. IV(b), by noting the direct product |j, j') and
the orthonormalized character (j | i) = 96(,J) of the
single-particle energy-eigenket vectors |j)’s. We find,
then,

g(r1l'z) =1 + n]v—l ’z {eﬂ(e(l)—ﬂ) - 7]}_1
2

X Uj* (l'l)U;(rz) H (59)

where U(r) = (r | j). The function forms of (j) and
U(r) depend upon the external potential field. The
second term of Eq. (59) is an extended London-
Placzek function, which does, in general, not have
a pair character asin the noninteracting particle system.
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Lightlike (null) hypersurfaces are treated by means of an intrinsic Ricci rotation coefficient technique.
This provides an effective way of dealing with the various types of geometry on a null hypersurface.
The formalism is used to examine inner affinities, differential invariants, local features such as asymptotic
and shear directions and geodesic lines, and to give a short description of null hypersurfaces in flat
space-time. Applications to gravitational radiation theory and cosmology are briefly mentioned.

1. INTRODUCTION

HERE are several reasons, apart from its intrinsic
interest, for an investigation of isotropic hyper-
surfaces in a pseudo-Riemannian manifold. One is
connected with gravitational waves. A suitable
description of a general outgoing gravitational wave
can be given in terms of a one-parameter set of
propagation fronts ‘W which are null hypersurfaces,
and a set of “conjugate null hypersurfaces” U
intersecting the set of propagation fronts W in two-
dimensional spacelike surfaces. Intrinsic structures on
each hypersurface V' € U measure the intensity of the
outgoing gravitational wave.! Note that the set U
could be interpreted as a system of incoming wave-
fronts, with the intrinsic structure of the hypersurfaces
U measuring the intensity of the incoming waves.?
Another reason for considering isotropic hyper-
surfaces comes from cosmology. As Heckmann and
Schucking pointed out in 1958, the cosmological
problem should be formulated as a characteristic
initial value problem on the past null cone of the
observer. Most relations between observable quantities
can be written in a form involving only those geomet-
rical quantities which are related to the inner geometry
of the past cone. Moreover, because of the uniqueness
of the characteristic initial value problem inside the
past cone, the cone geometry together with quantities
describing the matter distribution on the cone can be
used to characterize a world model. Evidently, an
appropriate technique for treating the geometry of
light cones is needed.
The study of the differential geometry of general

* The main results of this paper were presented at the London
conference on general relativity, London (1965).

1 G. Daiitcourt, to be published.

2 The reciprocity between wavefronts and intensity measuring
fronts with regard to incoming and outgoing radiation follows
essentially from the geometrical nature of gravitational waves.
Naturally the splitting into incoming and outgoing radiation is
not in general a unique one.

2 O. Heckmann and E. Schucking, La structure et I'evolution de
Punivers (Reinhold Europe, Brussels, 1959).

null hypersurfaces is still in its initial stages.# In this
paper a kind of spin coefficient technique is presented,
which provides an effective way of dealing with the
various types of geometry on a null hypersurface.
This formalism is used to examine inner affinities
(Sec. 2), differential invariants (Sec. 4), local features
such as asymptotic and shear directions (Sec. 5), and
geodesic lines (Sec. 6), and to give a short description
of the special lightlike hypersurfaces appearing in
flat space~time (Sec. 7).

A null hypersurface is defined intrinsically as a
three-dimensional manifold of class n > 2 in the
sense of Veblen and Whitehead® on which is given a
degenerate metric tensor field y,.(x%) (i, k = 1, 2, 3).
The tensor y,; has, in general, rank 2, class C? at least
and signature (0, 1, 1). Since the appearance of focal
points can violate the rank condition, it is useful to
define a regular point P with coordinates x' as a
point satisfying the condition rky,(x") = 2. Local
properties of null hypersurfaces are considered for
domains containing only regular points.

At a regular point, y; determines one and only one
eigendirection €* with eigenvalue 0:

Yae® = 0.

(M

A contravariant vector is called spacelike, if
yaa'a® > 0, and null, if p,a'a* = 0. a' being null
implies @' = ae’; every (real) direction in a null
hypersurface is either null or spacelike. The curves to
which the directions ¢ are tangents are the solutions
of the differential equations

e (x*) = dx*/dv, )

4 R. Penrose, Null Hypersurface Initial Data for Classical Fields
of Arbitrary Spin and for General Relativity, preprint (1961); I.
Ozsvath, E. Schucking, Recent Developments in General Relativity
(Warschau, 1962), p. 339; R. Sachs, J. Math. Phys. 3, 908 (1962);
G. Lemmer, Nuovo Cimento 37, 1959 (1965); M. Crampin and
J. Foster, Proc. Cambridge Phil. Soc. 62, 269 (1966).

5 0. Veblen and J. H. C. Whitehead, Foundations of Differential
Geometry (Cambridge, 1932).
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these curves are called generators of the null hyper-
surface. They are lightlike geodesics when the hyper-
surface is embedded in four-dimensional space. In
what sense they may be considered as geodesics of the
inner geometry also is made clear shortly. The general
solution of (2) is of the form

xt = x{(w4, v), )]
where the two parameters w4 [arbitrary up to w4’ =
w4’(w4)] fix a generator, and v, which is determined
up to v’ = v'(v, w4), 0v’[0v % 0, o is a parameter
along each fixed ray. Note that v need not be an affine
parameter.

From the assumptions made above, it follows that
there are two vectors (spacelike directions) #* and
4, satisfying both

Ty =m # 0,

_ " Q)

Ty = T # 0,
and the further condition, that €, =%, #* form a
linearly independent triad. Defining a third covariant

vector by
&)

(where €;,; is the three-dimensional Levi-Civita
symbol), one obtains a linearly independent covariant
triad =, 7, ¥.. However, even if the additional
conditions

win, = 7, =1,

— ~1 2 8.5k
Vi = €T €, ' mH

wii, = 7w, = wly, = 7y, = 0,

o o g =
em; = e, =0,

(6)
ey, =1

are imposed, the triad is not uniquely determined. It
is easy to show that the remaining freedom at each
point is that of null rotations, that is, the subgroup of
the Lorentz transformations, which leaves one null
direction (the generator direction) unchanged:

t; = e,
' = (' — kA€, R
Ei’ — },E‘, )

vi = (URy; + «t; + R,

= (1/\/2)('”; + i)

(« complex, 4, u real). The 4-parameter group (7)
splits into three commutative subgroups characterized
by (8 xk=4—1=0, (b) u=«=0, (c) u=
A — 1 = 0. (a) corresponds to an ordinary rotation of
the complex null vectors, (b) to a change in the pa-
rameter v (scale transformation), and (c) to a null
rotation, that is, a reassignment of the spacelike
plane element spanned by #’. Obviously, the inner
metric, expressed in terms of the triad by

where

®)

Vi = T, + Fgn, = [ + L
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is invariant with respect to (7). Because of the
degeneracy of p, there is no contravariant metric
tensor p* satisfying y‘*y, = 6¥. However, there are
solutions €* of the equations
VeV k€ == Vg, )
valid even if y, is degenerate. In particular to every
triad there corresponds a solution
€* = tifk 4 itk (10)
of (9). This quantity is introduced as a substitute

contravariant metric. Under (7) €% transforms
according to
e = % 4 gie* + ae
a' = Mriet — xt* — kf?), (11)
Furthermore, €'* satisfies
eik: = 0’
Ve 12)

5“7::‘ = 6? - Gk’)’i .
The relation between the co- and contravariant triads
is

vi = (i[B)egt"Tt, € = il
t; = (i[A)e €ttt = iAeiy,1,,

A = ifikleitkt-l = llieikl‘y‘-tkf,.

(13)

2. AFFINITY

It is easy to show, by using the transformation law
for y,, that because of the degeneracy of y,, there
is no uniquely determined affinity I'}, depending only
on the inner metric y;; and its first derivatives. One
way out of this uncomfortable situation would be to
use affinities of higher order (depending on higher
derivatives of ;). In fact affinities of this type do
exist. Alternatively, one may introduce a class of
affinities and demand all relevant equations to be
invariant with respect to a change of the affinity
within this class. This can be done in the following
way:

Any affinity ‘T, = ‘T',, must satisfy an equation

Vv = Yaer — TiiVim — (14)

Cyclic interchange of ik/ and addition and subtraction
gives

T Vem = K-

TaVm = T + A

Ay = HKipy — Kii — Ki)- (1)
Transvecting with €' gives the condition
P + Ay =0 (16)
and Kj;, = 0 requires
hy =Ty =0 an

Despite its definition (17), h, behaves as a tensor
with regard to arbitrary coordinate transformations
x'— x¥ = x"(x¥) and is multiplied by A under a
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triad transformation (7). Note the transversal char-
acter of b, :h,;e* = 0. In fact, A, is, apart from a
factor 2, the Lie derivative of y,, with respect to the
generator congruence €(x*).® Equation (17) implies
a strong restriction on the type of null hypersurface
considered; one may not assume K, =0 in the
general case. The general solution of (15) turns out to
be

1k =€ }'zk + €mr(r‘zlcr + Azkr) (]8)
In order that ‘I'}; transform as an affinity, the trans-
formation law of 4, has to be

ax ox™
a-, a_k YZm

62 1
9 ”i;x" ' (19)

The most general quantity 1, satisfying this trans-
formation law is

Ao =3z + Vi) + pas (20)

My being an arbitrary tensor field. The affinity is
therefore
Th ="V + 3" in + v + "t + v Ay,
This is the sum of two tensorial terms, ¢™u, and
y™Au.. and a quantity transforming as an affinity.
Obviously, the quantity

Th = €"Tam + 3 in + 720 (21)
may be used as an affinity on the null surface. To

every given triad €, ¢’ (or v, t;) there corresponds
one affinity (21), satisfying

Viva = hayye + My

zik +

22
Clearly,

Vel =0 (23)
is an identity for every affinity (21): the generators
are geodesics with respect to the inner affinity I'?, .
In contrast to the usual geodesic equation, a change of
the parameter v in € = dx’/dv does not change (23),
because I'Z, transforms in a complementary way [see
Eq. (28) below].

Further consequences of (22) are

€Vpy =0 (24)
and

Vet = —e"eV y, — 7'V y, .
From (24) it follows that V,e* = 0 is equivalent to
y; being a gradient. For V,e?* = 0 <> V,y, = 0 and
from (21),
Vivi = %(Vz',k - Vk,i)- (25)
If we perform a transformation (7), T',, will in
general transform according to

e = i — whhgt' — RAh, i + myet  (26)
¢ A detailed treatment of Lie displacements with regard to a null

congruence is given by F. A, E. Pirani and A. Schild, Hilavaty-
Festschrift (to be published).
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with
2 - .. ..
E My = dkAhy + « by, + )t + &0+ Rof;

— A2 = Ayl 2+ k(Vit; 4 Vity)
+ &(Vil; + Vi) (27)
A change in scale transforms I'Y, according to
I =Th - 3l 2 + Vil,k/}*z)- (28)
However, I'}, is invariant with respect to spacelike
rotations.

It is clear from these considerations that an affinity
is fixed in a unique manner, if a covariant tensor
field is specified on the null hypersurface. Using the
gradient of a differential invariant of y, for y,, we
could obtain uniquely defined affinities of higher
degree. Nevertheless it seems natural to use (21).
Later it is shown in detail that (21) is obtained by
projecting the Christoffel affinity of the embedding
space into the null hypersurface.

3. ROTATION COEFFICIENTS

Using the affinity introduced in Sec. 2 and expressing
the covariant derivatives of the triad ¢, ¢" and y,, ¢,
in terms of the triad itself, one obtains

Vie' = —(pli, + ot )t — (pty + G

+ xhe’ + 7he’,  (29)
Vit = (18, — 7, + iyt + (ipty, — xyu)e’, (30)
Viyve = ip(tf, — £6) + 2(tv% — viti)

+ iy — vifi)s GI)
Vit: = Tty — TUl + oyt + pyity + Gyif. (32)

On the right-hand sides there appear the nine inde-
pendent Ricci rotation coefficients p, », ¢ (real),
7, x (complex). The equations

p+ iv=€(Vil; — Vi) = €t¥(fy; — 1,;), (33)

o,

o = €PV,i, = (i, — £, (34)
T = t-it-kvkti = fitk(ii,k - fk,i)? (35)
= eV, = %fin(Vi,k - }’k,i), (36)
fp = {'"Viy, = 3 — 730, (37

are equivalent to (29)-(32). Under a transformation
(7) they become

o =, (38)
¢ = de" g, 39)

v = e ¥ + idu — ixADp — ixdv + Rlo — kp),
(40)

v' = Jv + ADu, (41)
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¥ = ey + (52/22) — Irph + Ioxh

— Yoikd + 1ADk], (42)
ig = ip[A + W —«F + &7 + ok — &)
+ 3x(27 + 02/A — icdv — kAG + ADR)
— 3k + OA/A + ixdv — kAo 4 ADk). (43)
The intrinsic derivatives are written
D =¢0,, 6=19,, §=7i0,. (44)

Applied to scalar quantities, they satisfy the com-
mutation relations

D8 — 6D = (p + w)d + 5 — 27D,
86 — 860 = #6 — 78 — 2igpD.

(45)
(46)

Here p and o represent the rotation and shear of the
generator congruence (see Sec. 5 for the well-known
geometrical interpretation of p and o). They also
satisfy

(47)

x and ¢ turn out to have no intrinsic geometrical
meaning. The vector y, is hypersurface orthogonal if
and only if ¢ vanishes; if, furthermore, y; is a gradient,
then y is also zero. If triads with y, a gradient vector
are used (as is in fact very convenient), the trans-
formations preserving this condition must satisfy the
further restrictions

0A = — A DR — ifrv — kp — KG)

8k — 0k = kT — K.

hy = pya + oty + Gid;

(48)

The quantity r is connected with the inner geometry
of a set of spacelike wave surfaces spanning the null
hypersurface. If y, is the gradient of the function v,
constant on each surface of this set,

K =277 — 67 — 07 (49)

is the Gaussian curvature of the wave surfaces. The
last coefficient, v = (1/i)V,t,e*f* describes the deviation
of the transport of ¢ in the ray direction from parallel
transport with respect to the affinity I'},, v = 0 being
equivalent to parallel transport. This condition is
preserved under transformation (7) if we restrict (7)
through Du = 0.
The Riemann tensor constructed from the affinity
I}, , namely
Ry = Plz,z' - Firl’:k + Il —

myr
Flcr il

(50)
satisfies the usual identities

Rien™ = 0, R{ikl}rfb =0, V{iRkl}m’: =0, (51)
but has in general an antisymmetric contraction

Vie = Rikll- = "2R[ik] = Fk,i - Fi,k' (52)
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Here R;;, = Ry, " is the Riccitensorand T'; = T',. ¥,
is given in terms of the rotation coefficient by

1@=§ma—&ww¢+p@

+ ¥ty — vite)(Dx + ivy + dpx + 307)
+ H@ye — 7D — vf + 3p7 + 46%). (53)
The expression ¥, vanishes if y; is a gradient, then
additionally y,,R,,;™ = 0. The remaining nonvanishing
components can be written
t*"'e’Ry, i, = 0 = Dp — p* — 66,
f*%'e'Ry;™f,, = v = Do — 20(p — iv),
t*'e'Ry, " f,, = Op — 80 + 207 + o — py>

'Ry ™M, = —Di — i0v + Fp — 76 + ivF

+ ifo ~ pf, (54)
iRy, ™, = DT — i0v — 7p + 7o + ivr

+ 2ivy — oy,
FYER ™, = 217 — 67 — 61 + (2 + ip),
TRy ™ = — pX>»
'Ry ™i,, = — oY,
Ry ™M, = —igo.

The equations Ry,;” =0 lead to the important
identities
Dr = 8(p + iv) — 0 + 7(p — iv) + 7o

~ 2x(p + i) + 270, (59)

iDp = 8y — 6f + 2ipp + 7r — x7. (56)

4. DIFFERENT GEOMETRIES

So far we have been concerned only with the inner
geometry of a null hypersurface, that is, with those
propositions which depend only on the inner metric,
or alternatively which depend on the triad but are
invariant with respect to the 4-parameter group (7).
In this sense the group (7) can be considered as the
inner geometry group. This type of characterization of
a geometry by means of a group of triad transforma-
tions can be used to generalize the notion of inner
geometry.’

First we consider the hierarchy of conformal
geometries. The strong conformal geometry on the
null surface is fixed if y, is given up to a conformal
factor » (v, # 0), or by demanding all propositions
to be invariant with regard to the group

17 = (1p)et — RAe™e),

€ = Aé,

(57)

7 See also R. Penrose, Ref. 4, for different types of geometries on a
null hypersurface.
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or
t; = ve't;,
vi = Ay, + wt; + ki
This geometry is the geometry induced on the null
hypersurfaces of a conformal 4-space. Restricting
v by Dy = 0 or ¥ = const we obtain further geometries
(““restricted conformal geometry” or “weak conformal
geometry”); v = | gives the inner geometry.
Restrictions on the transformations of the scale
parameter v lead to another hierarchy. If v is required
to be an affine parameter on the generators, the
resulting geometry is called the affine geometry. The
group (7) must be restricted by DA = 0 in order to
preserve this property of v. The relation between the
inner and affine geometry is of primary importance in
understanding the embedding of null hypersurfaces,
for example into an Einstein space. For special null
surfaces there are further specializations of the
geometry. The focal points of a null surface (points of
intersection of neighboring generators) may be used
as zero points for the affine parameter, so that only
transformations of the type v" = av are allowed. An
observer at the vertex of a cone determines an affine
parameter in a unique way, inducing therefore a
further type of geometry. Still another geometry will
be determined if a set of two-dimensional spacelike
wave surfaces is fixed in the surface (for some physical
or symmetry reason). It may be noted that both types
of hierarchy just mentioned may be mixed together:
affine conformal geometry for example arises when an
affine parameter is introduced into the strong con-
formal geometry. The different geometries become
clearer, when the differential invariants belonging to
each geometry have been constructed.

(58)

5. DIFFERENTIAL INVARIANTS
A differential invariant of the first or second order
of the inner geometry is a function of y;, its first and
eventually second derivatives with the property

ir az'}’ik OV azﬂk
Iy, 22 %) = ik Y Fik 59
(y'k ox’ ax’ax"‘) (y ) (59)

" oxt oxtox™)’

In terms of the rotation coefficients and their
intrinsic derivatives, the inner invariants may be
described as functions of these quantities which are
invariant with respect to the inner group (7). In the
same way differential invariants of other geometries
may be defined in terms of the appropriate group of
triad transformations.

One of the peculiarities of null surfaces is the
existence of a first-order invariant. The invariant of
the first-order depends on the nine rotation coefficients
ps 0, T, v, X, @, invariants of the second order on the
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3+ 9 = 27 intrinsic derivatives of these coefficients. In
order to simplify the calculation, it is assumed—as
is permitted—wv = y = ¢ = 0. To preserve this con-
dition the transformation functions «, 4, u, ¥ must
be restricted by
oA = —A Dk — kp — KG), 60)
0k — Ok = kT — K7,

Dy = 0. 61)
For different geometries, additional restrictions must
be made. Invariants of the transformations (60), (57)
with (61) are the strong conformal invariants, written
in the special class of triads with v = y = ¢ = 0.
In a similar way the invariants of the restricted con-
formal geometries are obtained by imposing the
conditions Dy = 0, » = const. The affine-conformal
invariants are obtained from (57) and (61) by imposing
the condition D(Av) = 0. Invariants of the inner
geometry are obtained by demanding invariance with
respect to (7) together with (60). For the affine ge-
ometry, the additional condition is DA = 0. Every
invariant of a geometry is an invariant of the weaker
geometries in the appropriate hierarchy. The results
are: there is no first-order strong conformal or affine
conformal invariant. The inner, affine and restricted
conformal geometries possess exactly one first-order
invariant,

Jj=pllo] (62)
(or any function of j). The second-order invariants
are considered only for the strong conformal, inner,
and affine geometry. If the shear does not vanish in the
domain considered, there is one strong conformal
invariant, linear in the second derivatives:

i (D& Do\ , v _
I = M(’a_ - T) = (Ds + 20)le] (63)
with
g = ]UI eis

(written with respect to a general triad). If |o| = 0 in
this domain, there is no conformal invariant. Turning
to the inner geometry, in a domain with |o| 5 0,
p # 0 and I + (IF — 4[1 — j?])* 5 O [I, defined by
(64)], that is in the general case, four invariants exist,
two linear in the second derivatives:
I=1 + il = {Dp[p — Dafo)flo| + 2v]|o]|
and two nonlinear:
J = e"[(BB — Do — bp|p) + (af — 4)
X (865 — dp[p) + 2B(x — B)7]
+ 2e7(o — B)(27 + oo — dp[p), (65)
& = 2f — il
B =2j—il

(64)
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If I, = 0 and I? = 4(1 — j2), J drops out and besides
I there are three further inner invariants:
L = e®*'¥dcloc — dp/p — 27)

+ $3e /%3865 — bp[p — 27), (66)
M = e**do|oc — 0G/G — 20p[p) = —2e™4j|j
(with 2L = L). If the shear vanishes in the domain
considered, but the divergence is still different from
zero, no inner invariant exists. In the opposite case of
vanishing divergence, but nonvanishing shear,® two
cases are to be considered: If |;} # 2, only the

conformal invariant I, exists. However if |I,| = 2,
there is the inner invariant

N = e**(dg[c — 66/5) + }il,e=*'*do|o — §5/5)
+ 2il 727 — 4eis/27
(N = 2iN1,).

(67)

If both divergence and shear vanish (as for the
Schwarzschild surface), only one inner invariant
exists, namely

K = 277 — 81 — 67 + 2¢0. (68)

As remarked, for a hypersurface-orthogonal y; (¢ = 0),
K represents the Gaussian curvature of the spacelike
two-dimensional surfaces spanning the three-dimen-
sional null hypersurface. (For the Schwarzschild
surface K = 1/4m?, where m is the mass constant.)

The invariants for the affine geometry turn out to
be the same as for the inner geometry with the
exception that for p # 0 Dp/p® represents an addi-
tional invariant. For p = 0, |o| # 0 there is besides
I, one further invariant

(Do/o |ol) + (2iv]|o]).
6. ASYMPTOTIC AND SHEAR DIRECTIONS

Let us consider a point P on a generator w4 with
coordinates x’ or intrinsic coordinates v, w4. The
direction dx’ to the point Q on a neighboring generator
wd + dw is given by

dxt = (0x'/owA4) dw + (0x*[0v) dv,
the distance by
diz =y, dx' dx* = (0x*[Ow4)(Ox*/OwB)y,, dwd dwP.
(7
Here dI does not depend on the location of Q on the
neighboring generator (provided Q is in an infinitesi-
mal distance from P). A short calculation gives, for
the change in d/ if P moves along its generator
D(dP?) = ~2h,, dx* dx*. (72)

8 Note that hypersurfaces of this type cannot appear in Einstein
spaces whereas all others can.

(69)

(70)
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The shear directions dx* are defined as directions with
extremal change of distance. Asymptotic directions
are defined as directions with vanishing change of
distance, if any exist.

Setting

=10t 4 I+ Lé (73)

for a shear direction one finds from the extremum
condition the eigenvalue equation

(ha — Aya)l* =0, (74)
which leads to

o~ A)+ o =0 5

with
A,=p x|l (76)

and
l{ — is/2ti/\/'2' + e—is/2ii/\/§ + Llei, (77)
= —ie*Pf]J2 + i P2 + L' (78)

as the general expression for both spacelike shear
directions, normed to 1. /{ and /; are orthogonal to
each other. Equations (77) and (78) do not each
determine one spacelike direction but rather a lightlike
plane element, spanned by the generator direction
and any of the spacelike directions contained in (77)
or (78). The shear plane element could be described
likewise by its covariant tangent vector /; = e, /%¢!/A.
Y

If asymptotic directions are represented by

at=at' + af* + A€, (79)
then from A, dx* dx* = 0 it follows that
2pad + a*s + a%o = 0. (80)

For a solution of (80) to exist the inequality p* —
06 < 0 must be satisfied. This is equivalent to A,
not being positive definite. According to the existence
of asymptotic directions (or equivalently the value of
the first-order invariant j) the points on a null surface
divide into four classes as shown in Table L.

The asymptotic directions (normed to 1) are given by

ai = £ J2 4 eI )2 4 A, (81)
aé — tiez’(s—ﬂ)/z/\/i + t-ie—(s—a)/z/\/j + Aze". (82)

TasLE 1. Classification of null hypersurface points in terms of
asymptotic directions.

No. of asymptotical

rkh plane elements
2 p?— 06 >0 elliptic 0
point
2 pt—06 <0 hyperbolic 2
point
1 pP=06,p#0 parabolic 1
point
0 p=lo] =0 planar point o
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The angle ¢, defined by

cos # = —j, sin & = (1 — 2} (83)

is the angle between both asymptotic directions. The
corresponding plane elements become identical in
parabolic points (j= #1). If there are asymptotic
directions ([j| < 1), the shear direction /{ bisects the
angle 9. The geometrical meaning of the classification®
given in the table is obvious: if p = |o| = 0 (planar
points), the distance to the neighboring generators
remains constant along the given generator. In
elliptic points the distance to all directions will change
in the same sense. Hyperbolic (respectively parabolic)
points show 2 (respectively 1) directions with no
change of distance. In hyperbolic points, there are
four disconnected sets of directions, separated by
asymptotic directions, with the same sense of change
of distance in opposite directions; expansion and
contraction occur in alternate regions. A polar
diagram similar to Dupin’s indicatrix can be used to
picture the different situations. If the normed space-
like direction is represented by
dxildl = e’r]\/2 + e 1Y /2 + Bé,

then D(d)|dl = —|o|cos (28 — 5) — p gives the
change of distance in this direction; 8 varies from 0
to 2.

The meaning of I, can be seen from Dj = pl,: I,
represents some invariant measure of the change of /.

The equation
D = —Lp/(1 — )} (34)

expresses the change of angle ¥ between the asymp-
totic directions in terms of I,. I, has a different inter-
pretation. In the general null surface, there will be a
rotation of the shear directions with regard to the
ray congruence along the given generator. The
normed spacelike direction from the generator w to
the generator w4 + dw+ is given by

mt = (et + e N2 + Mé (85)
with
etim — a X d / 2 1, dwP. (86)
From (86) follows
Dm = —v + (6/2i)e*™ — (o[2i)e ™. (87)
Let 8
ni = (ett 4 e"i%)/\/2 + Nét (88)

® For a general conformal transformation of the triad ¢’ =
Ae~®ng, p’ = Ap — AD Inv. 1t follows that the above distinction
is invariant for all geometries considered in Sec. 3, with exception
of the strong conformal and affine-conformal geometry. Here the
notion of asymptotic directions becomes meaningless, but shear
directions still exist.
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be any other spacelike direction. The angle between
(85) and (88) is determined by g =nr — m (since
cos B = n'm*y;) and the change of § along the ray is
given by

dfldv =
If n’ represents either of the two shear directions then
dpjdv = } |o| . (90)

I, therefore turns out to be a measure of the velocity
of rotation of the shear directions. For hyperbolic
pomts the rotation velocity of the asymptotic dlrectlons
is given by

}lol{h + [Lj/(1 —j2F — 201 — ).

In general the shear surface elements and asymp-
totic surface elements cannot be extended to form
finite two-dimensional lightlike surfaces. The condi-
tion for surface forming is the same as for nonrotation
of the corresponding shear and asymptotic directions,
as may ecasily be seen either from a geometrical
consideration or from the following calculation. If
the surface element is spanned by »* in (88) and ¢,
its tangential vector can be written

Dn + v + oe~?"[2] — Ge?"[2i. (89)

pi = €qnte’fA. ©n

The condition for p; to generate finite surfaces is

*p, P = (%2)
explicitly

nDi — 7iDn — 2ivnii + 6nt — o2 = 0. (93)

For shear directions this turns out to be |o| I, = 0'°
and for asymptotic directions I, £ (fj/(1 — ]2)% —.
o1 — ]2)%] = 0. Nontrivial shear surfaces (/; =0,

lo| # 0; if |o| = 0, all lightlike two-surfaces on the
null hypersurface are shear surfaces) will appear for
instance on null hypersurfaces in conformally flat
space times. This follows from the conformal in-
variance of I; and the fact (compare Sec. 7) that
I, vanishes for null hypersurfaces in flat space. Null
surfaces with vanishing J, have simple properties
with regard to focal points, for a given generator
intersects the neighboring generators only on the
shear surfaces.

7. GEODESIC LINES
A geodesic is a solution of the differential equation
a*Vat = la', a* = dxi/dl. (94)

It can easily be shown that (94) expresses a condition
invariant with respect to the inner geometry if and

1° Note |a] # 0 at hyperbolic points.
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only if a* ~ € [when the right-hand side of (94) must
also vanish]. In this case the &° curves have zero
metrical lengths and so are the shortest curves on the
hypersurface. For spacelike curves this second
definition of geodesic line must be used. The condition
for the arc length integral

Q@ rdxtdxt
I=| (= —ya) dl
fp (dl dl y")
to have an extremum with fixed end points P and Q is

Bt ding

Yik d12 kli dl dl 2Vik dl dl

with f = (dx'/dl)(dx*|dl)y, . In contrast to (94), this

equation is invariant also for spacelike curves. Using
the arc length as parameter (f = 1) in (96) gives

h(dx?|dl)(dx*|dl) = O, (97)

which says that spacelike extremal curves on null
hypersurfaces must be asymptotic lines: They appear
only in nonelliptical domains. Write dx’/dl = &* with
at equal to (81) or (82). The further two relations
contained in (96) for the asymptotic lines to be
geodesic are, in a hyperbolic domain

Aol [ £ 201 — A & LjIA — A
—_ i\/j(,re-i(s:ts)m — Fellsxd))
— ei(s:t&)/2/(6s + 619)/\/2
— e s 1 59)//2, (98)

here + and — refer to the two asymptotic directions
at every point. There are various different cases to be
considered. If both invariants I, + 2(1 — /2 £
Ljl( —j2)% are different from zero, A, and A_ can
be calculated from (98) and a geodesic asymptotic
line is fixed. In this (general) case the hyperbolic
domain on the null hypersurface contains two space-
like congruences of geodesic asymptotic lines. If one
or both of the invariants vanishes,1° there are in
general no geodesic asymptotic lines. However, if the
right-hand side of (98) vanishes (say for one sign),
every asymptotic line (of the corresponding sign)
becomes geodesic. The expression on the right-hand
side of (98) is a real invariant of second order. If
I, # 0 the right-hand side of (98) is

k(:l:)‘,+ k(:i:)j

95

(96)

(99)
with

ki, = (1 — YA, ki, =~k )+ (100)

If I, = 0, then I = 4(1 — j*). The complex invariant
J does not exist in this case (vide the Appendix).
Using here the invariants L, M, #, the right-hand
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side of (98) now becomes

ieii9/2(%M) :F ej:3i8/2M/4(1 _]2)‘5
F FUORIA1 — Bt (101)
Equation (96) holds only in a hyperbolic domain. At
a parabolic point' there is only one asymptotic
direction. The condition corresponding to (98) is
lo| L4 = —i/2e"%F + i\f2e~/%r
© — (Ose®’? 4 dse—#/2)[, /2. (102)

If I, # 0, there is a preferred congruence of geodesic
asymptotic lines. If F, vanishes, either there is no
geodesic line or, if

—ieis/25 + je—i8/2r — (dseislz + 5se—is/2)/2
= i3 — M + L) =0 (103)

is satisfied,!? every asymptotic line is geodesic. The
situation is different for planar null surfaces. Here
(97) is satisfied automatically and (94) gives one con-
dition, and there are oo! geodesic lines through every
point.

8. NULL SURFACES IN FLATF_QPACE

Some remarks may be made abotit embedding
restrictions. As will be shown in a forthcoming paper,
an embedding of a given lightlike hypersurface into
an Einstein space does not restrict the inner geometry
locally, so long as only finite domains are considered
for which p £ 0. Every null hypersurface in an
Einstein space will ultimately develop caustics, if
there is no intrinsic lightlike group of motions on the
hypersurface. A null hypersurface with an inner
geometry given globally without both focal points and
a lightlike group of motions cannot be embedded
globally into an Einstein space—there must occur
singularities or regions with T,, # 0. Also there are
local restrictions of the affine geometry (one affine
invariant has to vanish).

For an embedding into flat space even the inner
geometry is locally restricted. If j # 0, the conditions

I, =0, (104)
L=([j)—j (105)

are necessary and sufficient for local embedding. If
Jj =0, in addition to p the shear |o| and the invariant
K must vanish; the last condition expresses the fact
that the only planar null surfaces are null planes

111t is assumed that the parabolic domain is three dimensional;
in general, however, there are only parabolic two-surfaces on a null
surface, dividing domains of elliptic and hyperbolic points.

12 Because of j= —1 here again the particular case Iz =0,
I} = 4(1 — j?) applies.
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[with the metric ds? = (dx?)? 4 (dx®)? in special
coordinates].

The restrictions for the affine geometry turn out to
be!? p = 0, w == 0 in general. Their integration gives
the explicit dependence of p and ¢ on the affine
parameter v:

p = (p° + v[3%° — p®2D[([1 — vp°]® — v%6°5°) (106)
0= ([l — vp] — 120°"). (107)

Furthermore,

J=Jo + vp°([jo = jo)- (108)
Except in the cases 0 =0, p # 0 (cone), 6 = p =0
(null plane), p?=0& or j2=1 (parabolic null
surface), every null hypersurface possesses two dis-
tinct caustics for v = (&1 — jo)/p°(1/jo — jo), con-
sisting of the focal points of the corresponding set of
shear surfaces. From (108) it is seen that j = +1 ata
focal point and I and J vanish there. A general null
hypersurface in flat space exhibits the following
behavior as one moves along a given ray: at infinity
the surface consists of elliptic points; after passing
the first (parabolic) focal point the ray enters the
hyperbolic domain until the second focal point is
reached. Then elliptical points follow until infinity
is reached again. Introducing the invariant areal

distance r by
r= roexp{—f pdv}

(the integral is an integral invariant of the inner
geometry), (106)—(108) may be written

(109)

p = £(rop"r)(1 — 1/j2 + 2/ 2,
o = d’ry/r?,
r=rl(1 — A1 - DI,

r becomes null in focal points. With respect to r the
null hypersurface can be divided into four regions
extending from p = 0 to p — F oo, respectively. In
every region, both r and the affine parameter v are
related in a one-to-one manner.

(110)
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13y and w do not behave as affine invariants in the strict sense,
but acquire factors A2e~%#, A% under transformation. However,
their vanishing is an invariant statement in the affine geometry. The
invariants constructed from y and w are y/po, w/p?, respectively;
if these invariants are used, the cases p = 0 and [o| = 0 must be
considered separately.
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APPENDIX

Using infinitesimal transformations

1=1+)v.,
et =1+ ig, (A1)
K= K,

[note «, A, u are restricted by (60), (61)] we obtain for
inner invariants of the first order from I(p’, ¢’,7') =
I(p, 0, ) the system:

Alp(31/0p) + o(31/30) + 3(21/95)]
+ io[—20(31/30) + 25(31/35)
— #(3I0r) + 7(21/07)]
+ i[— p(81/d7) + 5(91/7)]
+ k[—p(21/2%) + o(21/27)]
+ i6c(01/07) — idw(01/07) = 0. (A2)
Choosing 4 = ¢ = & = 0, it follows
3ljor =0, 8I/a7 = 0.
Using this in (A2):
pdl|dp + odljdo + 501)95 = 0,
0dl|d0 — G91[35 = 0
is obtained. The general solution is given by
I = I(p/lol) = I(j).

It is convenient to choose I = j. j is not an invariant
of the conformal geometry: No conformal invariant
of the first order does exist. j however is the one and
only first-order invariant of the restricted conformal
geometries (with exception of the affine conformal
geometry). j is also the only invariant of the affine
geometry.

The invariants of second order depend on the 18
quantities

(A3)

x! = Dp, x%2= Do, x?= Dg,

xt=0p, x*=20p, xb=da,

x" = 0o, x®=06, x°®=245 (A4)
X0 = g7, xM =01, x? =47,

B =487, xM=p, xB=og,

=5 xM=7 x¥=7F

Because of (55) and (56), they do not depend on Dr
and D7. The condition I(x?) = I(x") leads for in-
finitesimal transformations (A1) and » =14 » # 1
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(strong conformal geometry) to the basic system

0 = (2DpI* + 2DolI? + 2DGI® + 6pI* + 8pI5> + ol
+ 8ol + 8GI8 4 8GI° + pI'* + oI* + GI'9)
+ Di(pI* + oI® + GI%)
+ if(—2Dol? + 2DGI® 4 dpI* — SpI5 — bol®
— 38617 + 36GI® + 8GI° + 26711t — 25712
— 20I% 4 26118 — 7['7 4 7[1%)
+ i —2710 4 71 — '8 — 2016 4 2G1°)
+ i(—7I? 4+ 713 4 17 — 2617 + 261° + 1Y)
+ 8M(pI* + oI + GI®) + Si(pI® + oI + GI%
+ ¥W(—I%p — I*6p — dal® — bol” — 6518
— 8GI° — 2070 — 267[1 — 2872 — 25713

—_ 7-117 —_ ;118)
+ DH(— %) + 89(— 7T — I'8)  §(—7110 — 7]12
— F[1 — 1)

+ k(—DpIt — Dgl® — D&I® + doI'® — D1]®
— 8pI't — DFIM + SoI'® — §pI'® + oIV
— pI'®)
+ k(—DplI5 — Dal” — DGI® — 8pI'® + 5511
— 8pI'2 — D7I'® + 8§G1'* — DFI'3 — pI'" + GI')
+ 0k(aI'® — pIY) + dx(cI* — pI™®)
+ 8k(—pI'2 + GI'3)
+ Si(al't — pIt3)
— I'D% — dDvI* — $DyI®
— OOVIM — i0OpIM — B6vI2 + i8S
— 810 + I'®) 4 iSSp(I® — I'3),

Here, 9I/0x' = I'. From the arbitrariness of the
second derivatives, it follows immediately that

N=Jt=[0=J10 =11 = 12 = [13 =— (),

Assuming |o| 7 0 (if |o] = 0, no conformal invariant
exists), from the rest of the system (AS5) follows

[P=D=P=]"=I"4=]7=]8=0,
Dol + DGI? = —}ol's — {618,
Dol? — DGI? = gI'® — oI5,

ol*+ I3 =0.

The general solution of this involutive system of
differential equations is given by

I, = i(eD& — 5Da)[2 |o)? (A7)

14 An asterisk denotes an equation valid only for the class of
triads withv = =@ = 0.
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or an arbitrary function of I, . For a general triad
I, = (cDG — 5Do)[2 |0]® + 2v/|a]
= (Ds — 2o)lo]. (A8)

I, represents the only strong conformal invariant of
second order.

For the first restricted conformal geometry (Dy = 0),
if p#0, |o| #0, Do + oD5 — 2Dp |6]?/p # 0, a
similar system follows from (AS5). The general solution
here is given by

I=i(Dplp — Doo)/|o] + 2vflo] = I, + il,. (A9)
In the particular case (o] = 0, no invariant of this
geometry exists, If p =0, |o| # 0, one obtains 1.

The other case is p # 0, |o] # 0, but I, = 0. Besides
I, there is

eis 2P —Je (SO' —Je is(:s (AIO)

26p — jdoe " — jéie
an unimodular invariant, if the denominator in (A10)
is different from zero; if it is zero, besides I, there is no
additional invariant.
For the inner geometry ¥ = 0 in (AS). The second
transversal derivatives here give
M=[2=0, [10=]13
the following system is obtained with the use of (59):
2DpI* + 2Dol? + 2DGI3 + 6plt + SpI5 + bol®
+ S0l + 6GI8 + 6GI° + pI® + ol'3 + G4 = 0,
pl* + ol* 4+ GI° = 0,
—2DolI? + 2DGI3 + dpI* — 8pI® — S0l — 3601?
+ 36618 + 661° — 201" + 261" — 7' + F['¢ = 0.
15 = 201" — 251°,
I8 = 2G1% — 241,
pl* + ol® + GI* = 0,
pl* + oI’ + 6I* = 0,
DpI* + Dol® + DGI8 — ol's + pI'® =0,
DpI% 4+ Dol” + DGI® + pI's — GI*¢ = 0.
(Al1)
The involutive system (Al1) consists of 9 equations
with 14 independent variables. When p # 0, jo| # 0,
I? + (12 — 4[1 — j2])2 5 0, the rank of the coefficient
matrix is 9. In this general case an integral basis
consists of 5 integrals. One verifies that apart from
I'in (A9) and j, (65) also satisfies (A11). In the par-
ticular case I, = 0, I? = 4(1 — j*) the equations (A11)
are not independent. Here, the four independent
variables j and (66) do exist (the rank of the corre-
ponding system of differential equations is 8, there are
12 independent variables). Other particular cases can
be treated in the same way. For the affine invariants,
because of the restriction DA = 0, the condition
pI* + olI* + GI* = 0 drops out, and the number of
invariants increases in general by one.
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A tensor symmetrization procedure obtained in a recent publication [Phys. Rev. Letters 16, 1058
(1966)] is shown to support rather than disprove Weyl’s tensor symmetrization theorem. This “‘extended”
symmetrization procedure differs from Weyl’s approach in that to construct a subspace irreducible
under GL(n, c) one starts with a set of formal states (symmetrized tensors with formal index values)
spanning an irreducible representation of the permutation group rather than starting with a single
formal state. Extended symmetrization is often more useful than Weyl’s approach because the states
obtained are highly organized and because it also yields an efficient independent state selection method
for the symmetrization procedures using modified Young symmetrizers and Wigner projection
operators. The state organization obtained makes it possible to show that the nonorthogonality which
is present for bases obtained with Young symmetrizers can be easily removed. The state organization
also makes it possible to simplify the task of recoupling symmetrized tensor representations to gain a
simply-coupled form. This form enlarges the class of Clebsch-Gordan and recoupling coefficients
which can be evaluated by tensor methods. Group matrices and Lie group generator matrix elements
are also obtained by tensor methods. Extended symmetrization using unitary representation Wigner
projection operators based on unitary representations is shown to result in orthogonal states although
usually not the orthogonal states desired. The usual Young symmetrizers are shown to often be more
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useful than modified Young symmetrizers or Wigner projection operators.

1. INTRODUCTION

RECENT publication! examined Weyl’s tensor
symmetrization theorem using the fact that a
symmetrized tensor subspace irreducibly invariant
under GL(n, ¢y must be a direct sum of subspaces
irreducibly invariant under the permutation group.
The mathematical results of Ref. 1 are also contained
in the next section [Eqs. (2.8)]. At first sight the formal
results obtained appeared to disprove Weyl’s theorem
when actually they support it.? In fact, the independent
states among those provided are the same as the
independent states among those provided by Weyl’s
theorem. To see how all this is so, we first note that
the permutation group operations act on the indices
as a function of their initial position rather than as a
function of their position after some permutation

t Present address: Department of Physics and Astronomy,
University of Georgia, Athens, Georgia.

1 D. R. Tompkins, Phys. Rev. Letters 16, 1058 (1966); 17, 739E
(1966).

2 H. Weyl, The Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946), p. 129. Weyl’s theorem, in describing
symmetrized tensors- from a traditional viewpoint [one formal
state for each subspace irreducibly invariant under GL(n, )], evi-
dently left some confusion about the explicit role of permutation
group symmetry in symmetrized tensor bases of GL(n, ¢). This
confusion may be the reason why some authors fail to properly
use Young symmetrizers to construct bases for the permutation
group [see footnote 7 in Ref. 1. However, contrary to this reference,
M. Hamermesh was seeking to construct basis functions for the
permutation group rather than for GL(n, c¢).] Because the pair of
states given by R. E. Behrends, J. Dreitlein, C. Fronsdal, and W.
Lee (see Ref. 4) conform to Weyl’s theorem, they do not need to
be extended (contrary to footnote 5 in Ref. 1) before entering index
values to complete bases for two equivalent (but not orthogonal)
representations of SU(m).

operation. Now consider the following pair of bases!
belonging to Young pattern (2, 1):

A(z V= (PQ)lllzJ.; BTPIEN

Aéz - = (PQ)ilis,igL(igz,)T;ﬂz?J

BV = (PQ)iyig.iaLtinip) Tiyioiy »

352,1) = (PQ)ilis,izTilizia >
where commas separate tableau rows and L,
denotes an element of the permutation group. Clearly
(PDiysy iy Liiyip Tiyiyi, = (PQii, 1, 41445, » SO this really
represents the same operation as that for state 4{2V,
although the state obtained differs from 4> in that
the values of the second and third indices of the tensor
have been transposed. Similarly, the state B{%l is
found to be derived from the same Young symmetrizer
operation as state B{® after the values of the second
and third indices of the tensor have been transposed.
This is consistent with Weyl’s theorem which applies
a single Young symmetrizer to a tensor form and then
enters all arrangements of each set of index values to
get n” tensors (r and n denote rank and dimension)
spanning a subspace irreducibly invariant under
GL(n,c). Referring to the first column of Egs.
(2.8) in the text, which is the same as Eqs. (6) in
Ref. 1, we see that: in the first basis, the operation
S; brings the indices of 7; ..., into the same
correspondence with (PQ)* as that found for
(PONT;, ..., ; in the second basis, the operation S,
brings the 1nd|ces of T; ..., into the same correspond-
ence with (PQ) as that found for POBT ...is s
and in the mth basis, the operation S,m brings the
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indices of T ..., into the same correspondence with
(PQ) as that found for (PQ), T, Cevq This plus the
above discussion show the new symmetrization pro-
cedure to be entirely consistent with Weyl’s theorem
and to yield the same independent explicit states
(symmetrized tensors with explicit index values). The
new symmetrization procedure differs from Weyl’s
approach in that to construct a subspace irreducibly
invariant under G L(n, ¢), one starts with an “extended”
set of N* formal states (symmetrized tensors with
formal index values) which span an irreducible
representation (u) of the permutation group rather
than starting with a single formal state of representa-
tion (u). Weyl’s single initial state is always one mem-
ber of thecorresponding “‘extended” set of initialstates.
Because of this, it could be appropriate to call the
new procedure an extended symmetrization pro-
cedure.

With an extended symmetrization procedure, it is
only necessary to consider a single arrangement of
each set of tensor index values in order to obtain a
set of independent states which spans a subspace
irreducibly invariant under GL(n, ¢). Weyl’s theorem
admits all arrangements of each set of index values
thereby obtaining a large number of dependent states.
Weyl’s theorem plus the rule of admitting only index
values which, when entered into the standard tableaux
of index positions, result in standard tableaux of
independent states spanning a subspace irreducibly
invariant under GL(n, ¢). Thus the large number of
dependent states provided by Weyl’s theorem presents
no problem. This independent state selection rule is
proven by the extended symmetrization procedure.?

The state organization provided by the extended
symmetrization concept makes it possible to develop
a simple independent state selection method which
applies not only when using Young symmetrizers but
also when using modified Young symmetrizers or
Wigner projection operators. It is well known that
bases obtained with Young symmetrizers are non-

3 An invariant (tensor) subspace is always completed by entering
all distinct arrangements of all sets of index values into the formal
expression of any single state in the subspace. If the subspace is in
decomposed form, then one such formal state from each invariant
subspace is needed. This is why a tensor can be described by a
single formal state (or a single formal state from each invariant
subspace of a decomposed form). For Cartesian tensors this tradi-
tional state selection method is completely efficient, but for sym-
metrized tensors it results in some dependent states. Cartesian
tensors can also be described by being formally extended before
state selection. For a tensor of rank r this approach consists of
using the r! group operations of 8, to construct the formal states
of the r! dimensional (reducible) representation of 8, and then
completing the tensor by entering (in all 7! states) a single arrange-
ment of each set of index values. Here a Cartesian tensor is described
by r! formal states. It is clear that both descriptions are equally
general. Except for Cartesian tensors, the extended approach always
yields fewer dependent states.
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orthogonal.* The state organization makes it possible
to show that this nonorthogonality has a simple
structure and can be easily removed. We are concerned
not only with the orthogonality of the states within
each representation but also with the orthogonality
between representations because, in order to reason-
ably invert the similarity transformation which de-
composes a tensor, it is necessary that all states of the
decomposed tensor be orthogonal (the initial tensor is,
of course, assumed orthogonal). Finally, the state
organization makes it possible to prove that sym-
metrized tensor bases can always be brought to a
simply-coupled form by using recoupling coefficients
which do not depend on the individual states within
the representations. Bases with simple coupling form
are orthogonal when simply-coupled constituents are
orthogonal.

Orthogonal symmetrized tensors make it possible
to obtain many detailed properties of classical group
representations by tensor methods. A particular
example is Clebsch-Gordan coefficients coupling
orthogonal symmetrized tensor bases. Orthogonal
symmetrized tensors in Kronecker product form
also allowed one to use tensor methods to evaluate
the usual Clebsch-Gordan coefficients for the decom-
position of Kronecker products. Such results are also
obtained for classical groups not possessing inner
products. The term inner product is here used in-
clusively for the Hermitian product or for any scalar
product, while the term scalar product is reserved to
express use of a metric tensor.

Symmetrization of a tensor always decomposes it
as a representation of any matrix group on the under-
lying space, but this may not yield irreducible tensors.
For the classical groups, the additional tensor opera-
tions needed to get irreducible tensors are well known
and that is why here we principally address ourselves
to these groups. The reduction of symmetrized tensors
of semisimple Lie groups can be completed by using
“shift” operations of the Lie algebra. Starting with
an appropriate initial state, such *“shift” operations
can be used to complete a basis of an irreducible
representation of the Lie algebra. Baird and
Biedenharn® obtain bases for the groups U(n) and
SU(n) by using Weyl’s theorem to construct highest-
weight states of U(n — 1) < U(n) and then complete
these U(n — 1) multiplets with shift operations. This

4 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev.
Mod. Phys. 34, 1 (1962).

5 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).
The Gel’fand-Zetlin method described by these authors is more
elegant than what the above text explains. In particular, it yields
general expressions (rather than algorithms) for generator matrix
elements.
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has the advantage of yielding a basis with precisely the
desired orthogonality. Moshinsky® has shown that
certain “‘special Gel’fand” states in a Gel’fand basis of
U(n) constitute an irreducible basis of a permutation
group S, which is defined on the index values of the
self-representation of U(n) rather than on index
positions.

As pointed out by Baird and Biedenharn (p. 1458),°
the integral approach (tensors with permutational
symmetry) has been used most at the level of implicit
states. For these and other features of current tensor
methods, the literature may be consulted.” The
methods to be pursued here are oriented entirely
toward explicit states.

2. EXTENDED SYMMETRIZATION
PROCEDURES AND STATE SELECTION

For any given Young tableau G, a Young sym-
metrizer is defined by (PQ)* = Y ,, pgd,, where ¢, is
+ (—) as g is even (odd). The two-sided ideals
obtained from the Young symmetrizers of all Young
patterns of the permutation group 8, are linearly inde-
pendent and span the whole group ring. The identity
element (e) is resolved into generating units [ ; (PQ)¥]
of such ideals by

.= gmu/rz)z[; (PQ):-*}

where N* is the dimension of representation type (u)
and the sums include all tableaux of all patterns of
8

2.1

.
Young actually worked with certain modified
Young symmetrizers which he termed natural units.
The resulting representations of the permutation
group have been called the natural representations.
With Q.p,, = p;,Q,, where p,, is an element of the
(p) group of standard tableaux G*, Young's modified
symmetrizers PQ’ are defined by®

(PQ); = (PQ)Y; — (P)ipua(Q)s — (PYiP(Q)y — * - »
(2.2a)
Q;'(P )ﬁ = 6jk(QP )'; . (2.2b)

The minimal left ideals obtained from modified Young
symmetrizers of standard tableaux are linearly in-
dependent and span the group ring. Because these
(essentially idempotent) generating units also annul
one another, then the identity element can be (Peirce)

¢ M. Moshinsky, J. Math. Phys. 7, 691 (1966).

7 H. Jahn and H. van Wieringen, Proc. Roy. Soc. (London)
A209, 502 (1951); J. P. Elliott, J. Hope, and H. A. Jahn, Phil.
Trans. Roy. Soc. London A246, 241 (1953); J. P. Elliott, Proc. Roy.
Soc. (London) A24S, 128 (1958); A. R. Edmonds, Proc. Roy. Soc.
(London) A268, 567 (1962); A. Pais, Rev. Mod. Phys. 38, 215 (1966).

8 H. Boerner, Representations of Groups (North-Holland Pub-
lishing Company, Amsterdam, 1963).
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resolved into generating units (PQ’)* of minimal left

ideals by
NI‘
[ e,

r!

3 (2.3)

i,

where the sums include all standard tableaux of all
patterns of §,.

The unmodified Young symmetrizers of the standard
tableaux also furnish generating units for independent
minimal left ideals which span the group ring. Because
these (essentially idempotent) generating units do not
in general all annul one another, their sum does not
in general form a resolution of the identity element.
A basis of the left ideal generated by (PQ) is given by
{S;(PQ)4}, where j ranges over all standard tableaux
and S, is the permutation relating standard tableaux
T* and B as

e =

B = 5,0;, (24)
so that

(PQ)‘; = S.’ik(PQ)zski' (2.5)

We only use S, to relate standard tableaux although
Eqgs. (2.4) and (2.5) apply to all tableaux. From Eq.
(2.1)itis clear that an arbitrary tensor can be expanded
as

NH?
Tyeoriy =3 (—,—)(PQ)?T.-,--,-,- 26)
tu \ Il
To obtain a basis of representation (u), we start with
any arrangement of the initial tensor indices 7, - - - i,
and any standard tableau G and select the components

{Su(POXT,.....}
(j ranges over all standard tableaux). These compo-
nents all appear in Eq. (2.6) because S;7T; ...
certainly appears as an index arrangement and we can
use Eq. (2.5) in the form
Su(PORT,,...i, = (PQYiSu Ty ..ip.  (27)

From Egs. (2.2) and (2.3) it is clear that these com-
ponents would also appear in a Peirce-resolved tensor,
so the above argument can instead be based on such
an expansion.

Because the minimal left ideals of distinct standard
tableaux are independent, a second independent basis
is obtained with the components

{Su(PO)T,;,....},
where i 5 k, index j ranges over all standard tableaux,
and the indices i, - - * i, have the same arrangement
as before. Proceeding in this way, all standard tableaux
are exhausted to obtain a complete set of independent
bases of representation type (u). The set is complete
because all basic states appear among the components
of the resolved tensor and the number of independent
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bases obtained is equal to the number of standard
tableaux. Independent bases of type (u) are now
given in two useful forms:

First basis
At = (POYT, ..., = (POXT,, .. ..,
Ay = (PQ)gsmTil-ni, = 521(PQ)‘1‘7}1---1',,

A“m = (PQ)‘Y‘:ISMIT-;l et dy = Sml(PQ)AI‘T;'l ERRE
Second basis

Bf = (PQ)‘L‘SmTi, e, = (PQ)‘1‘512T;',~--1‘,’

By = (PORT,, ...;, = Sa(PQ)iS:T,, .. .

tr

(2.8)

B, = (PQ)‘:nsmTi, ceeg, & Sml(PQ)‘llSmT;'l cedyt

mth basis (m = N*)
Dt = (PQYS1n T, .. .i, = (PQ)S1WT, - i
D% = (PQ):SenTs, -4, = Sa(PONS1W T, - i, »

D‘;n = (PQ)‘:nTz ccdy = Sml(PQ)‘{Shn’I}l- ERE P

Note that the initial tensor T ...; is not required to
be Cartesian. Similar tensor bases can be obtained
from the minimal right ideals (see the Appendix).

The right column of the above equations shows that
the kth basis state S;;(PQ)}SyT;,...;, is obtained
from the first basis state S;,(PQ);T;,...; by permut-
ing the indices of the Cartesian constituents of the
initial tensor in the first basis state as a function of
their symmetrized tensor position.

For definiteness and because symmetrization alone
yields irreducible representations of the full linear
group GL(n, c), we refer to this group in the present
discussion. Each subspace of a rank r tensor which
is irreducibly invariant under GL(n, c) is a direct sum
of subspaces which are irreducibly invariant under 8,..
These distinct subspaces belonging to a single irre-
ducible representation of GL(n, c) have distinct sets of
index values and all arise from a single irreducible
representation of 8, on a rank r tensor having arbi-
trary indices. In this way each independent irreducible
representation of 8, on a tensor with arbitrary indices
yields at most one independent representation of
GL(n, c). 1f repeated index values occur, then in
general the dimension of the representation of §, is
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TasLE I. Decomposition of a third-rank tensor on a three-
dimensional space. The states of {4} and {B} are described by
Egs. (2.9) and (2.10).

States

Tensor First Second Symmetric Anti-
components basis basis symmetric
123,132, 213 A, (123 B;(123) Y(123) Z(123)
231, 312, 321 Ax(123)  By(123)
112, 121, 211 A(112)  By(112) Y(112)
113,131, 311 A;(113)  By(113) Y(113)
221, 121, 122 A,(221)  B,(221) Y(221)
223,232,322 A,(223) B,(223) Y(223)
331,313,133 A,(331)  B,(331) Y(331)
332, 323,233 A;(332)  By(332) ¥Y(332)
111 Y{un
222 Y(222)
333 Y(333)
Number of

states 8 8 10 1

reduced by some states either becoming identical or
vanishing. We now show how to select independent
states of GL(n, ¢) by considering the initial states of
8, given by Egs. (2.8). Using commas to separate
tableau rows, we illustrate the following discussion
with the states

Al(l.ll‘2l.3) = (PQ)iliz.isTilizia’ (2.92)
Agliyigiy) = (PQ)ilia,izTiliaiz

and

By(irials) = (PQ)iliz.iaTiliaiz’

By(iyisis) = (PQ)i‘ia,iz Tilz‘zia .
To bring some order into the numerous index arrange-
ments, we admit only the index complexions i, <
iy < gy iy =iy < iy, iy < iy =1y, and i, = iy = is.
This allows a single arrangement of each set of index
values and that is what we want. For /; < i, < iy the
states of Egs. (2.9a) and (2.9b) are all independent.
Considering the other cases for the states of Egs.
(2.9a) we have

=iy <lg,
—3A4,(iyisis) = Ag(iyhis) = (Tisilil -
iy < iy =1is,

Ay (iyigis) = Ay(izials) = (Tiliziz - Tizizil), (2.10b)
=iy =1, A(iiyiy) = Ax(iyiyiy) = 0. (2.10c)
Equations (2.9a), (2.10a), and (2.10b) yield independent
states which are used in the decomposition of a third

rank tensor on a three-dimensional space as shown
in Table I. The second column of Egs. (2.8) shows that,

(2.9b)

Tililia)a (2.10a)

® Using either modified Young symmetrizers or permutation group
Wigner projection operators to construct a single formal sym-
metrized tensor state, it is possible to complete a basis for GL(n, )
for a GL(n, ¢) subgroup] by admitting all arrangements of all sets
of index values. However, the selection of independent states is
usually difficult and the states obtained usually do not coincide
with those obtained with the corresponding extended symmetrization
procedures.
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except for a uniform initial permutation of indices,
corresponding states of equivalent representations
are obtained with identical operations, so that for
the equivalent representation {B} the same results hold.
The bases {4} and {B} obtained are independent.
This approach is general. When the dimension of the
underlying space is less than the rank of the tensor,
some states of the expanded tensor [Eq. (2.6)] will
vanish. If a state in the tensor expansion vanishes, but
not all of its partners [as displayed in Egs. (2.8)] vanish,
then the representation formally associated with this
state still appears.

A basis of the minimal left ideal generated by the
modified idempotent (PQ’)* is given by {S,,(PQ')}.
Modified idempotents of distinct standard tableaux
generate independent bases. Independent tensor bases
of the equivalent representations belonging to the
standard tableaux of Young pattern () are then:

First basis

{SH(PONT,...i}icr2, - m
Second basis
{Si(POBT,, ...} iciz, - m

(2.11)

mth basis (m = N*)

{Sim(PQ,)‘r‘nTl . ir}f=1,2, ceem

where the initial tensor is not required to be Cartesian.
Using page-ordered standard tableaux, Eqs. (2.2) show
that (PQ"): = (PQ)~, so the mth basis of Egs. (2.11)
is identical to the mth basis of Eqgs. (2.8); in general
such pairs of bases are not identical. These natural
representation bases can be used to form subspaces
irreducibly invariant under GL(n, c¢) in the same way
as was done for the bases derived from the usual
Young symmetrizers. These bases are not as highly
organized as those of Egs. (2.8) because in general it
does not seem possible to write them in a form
analogous to that shown by the right column of
Egs. (2.8).

Wigner!® showed that one could construct a basis
of a group representation by using projection oper-
ators formed with the representation matrices them-
selves. Thus using group representation matrices the
minimal left ideal of row ¢ of representation [D*] of §,
has basic elements {3, [D“1],L, ) - Using the

19 E, P. Wigner, Group Theory (Academic Press, New York, 1959).

Actually Wigner followed a projection operation (‘‘row” operation)
with a ‘‘partner” operation. More recent authors combine these

into a single operation. A set of such operations result in which’

only one is idempotent and hence only one is a true projection
operation.

DONALD R.
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permutation group matrices of the states of Eqgs.
(2.8) to construct Wigner projection operators
2, [D%.1,L,, one finds that in general these projec-
tion operators do not coincide with (PQ)4. This is
seen from the fact that Young symmetrizers do not
in general all annul one another while the Wigner
projection operators do, i.c.,

N 1y u
(r_') g [l)a_lquLa ; [®ﬂ71]ll[4ﬁ
_ ,N*

’;"llaql‘v

Thus symmetrized tensor bases obtained with Young
symmetrizers are generally quite distinct from those
obtained with Wigner projection operators. This does
not contradict Y, [D#.];LY* =¥ because to
obtain symmetrized tensor bases the Wigner pro-
jection operators are applied to a general tensor.
Using Wigner projection operators, a Peirce resolved
tensor appears as

= Z (N“/r')Z [D5-11uL,T;, .

where the sums include all group elements, all repre-
sentations, and all rows. Here the basic states generally
do not all appear explicitly in the Peirce resolved
tensor. Using Wigner projection operators, the tensor
bases of S, have the form:

First basis
;z [D2],,L, T,
Second basis

{Z (D511, L, T,

mth basis (m = N*)
{z [‘D 1]1n7 Y 11 . ‘,} s
=12, m

where the initial tensor is not required to be Cartesian.

A direct sum consisting of one such basis belonging
to one arrangement of each set of index values forms
a subspace irreducibly invariant under GL(n,c).
Dependent states resulting from repeated index values
can be eliminated in the same way as was done for the
states of Egs. (2.8). Due to the work of Yamanouchi!!
the matrices of the unitary representations of the
permutation group are readxly available, and, when

~

11 T, Yamanouchi, Proc. Phys. Soc. Japan 19, 436 (1937).
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using such matrices, we shall write
Ul = (N'[r!) 2 [D}-1]L,
7

In addition to the self-representation where A
represents an element « of some complex classical
group, we also have the complex conjugate self-
representation where o« is represented by A* rather
than #. Denoting repeated Kronecker products by
exponentiation, we find the representations (A)* x
(4*)* are carried by tensors T;...;; ..., With
indices i - -/, transforming as (st)* and indices
Ji° ' Jji transforming as (#4*)*. For the groups
GL(n, ¢) and SL(n, c) irreducible tensors are obtained
by separately symmetrizing the indices i, - -/, and
Ji°* *Jx- Wecan also have indices of opposite variance.
Thus a tensor T9. 000" ’jk of GL(nc) or SL(nc),
with indices #,---i, and i} having opposite
variances of # and indices ]1 Jre and J1+ i, having
opposite variances of A*, is 1rredu01bly decomposed
by separately symmetrizing each set of the four kinds
of indices and then using the “trace” condition!?
of contracting opposing variance indices belonging
to the same complex conjugation.!® The metric tensors
of O(n, ¢) and Sp(n, c) make opposite variance indices
of the same kind one-to-one equivalent for these
groups. For the unitary groups complex conjugation
plus transposition coincide with a change of variance
and thus such tensors carry only two kinds of indices,
which are of opposing variance. Another kind of
nontrivial ““mixed” tensor is one carrying indices of
both a group and its cover group. An important case
of this is tensors of SO(3)-SU(2) on space-spin
coordinates. The usual approach of obtaining sym-
metric *‘traceless” projections uses the fact that all
irreducible representations of SO(3) can be described
by “traceless” symmetric tensors.!’> However, to
decompose the whole tensor, we must also consider
the representations with other symmetry. Thus, to
decompose a tensor 7, ...m4,...s, With vector
indices m, - - - m; and spinor indices a; - - * @, we use
Eqgs. (2.8) or (2.11) or (2.12) to symmetrize separately
the vector and spinor indices; apply to all vector
indices conditions of the form

uv — 0O
S G Ty v mpay 2y = 05

uv

and finally apply to all vector and spinor indices the

12 The term “‘trace condition” will be applied to a general class
of tensor subsidiary conditions.

12 M. A. Rashid, Nuovo Cimento 26, 118 (1962); N. Mukunda
and T. F. Jordan, J. Math. Phys. 7, 849 (1966).

14 Charles Zemach, Phys. Rev. 140, B97 (1964); B. Barsella and
E. Fabri, Nuovo Cimento Suppl. 11, 293 (1964).

15 M. Hamermesh, Group Theory (Addison-Wesley Publishing
Company, Inc., Reading, Mass., 1962).
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conditions

Z Gwﬂsz1

Bwp

w ..mjal...p...ak(o',,)g =0,

where ¢ is the Pauli vector operator represented in
the same coordinate system as the initial and metric
tensors.

3. ORTHOGONALITY AND RECOUPLING

The unitary groups leave the Hermitian product
invariant. The orthogonal groups have a scalar
product using a symmetric metric tensor and the real
orthogonal groups are unitary. For the symplectic
groups we can use symplectic coordinates'® which are
based on a scalar product using a skew metric, and
for the unitary symplectic groups we can also use the
Hermitian product.

For a Hermitian product

LTy = 2Ty LT = ST
i
If the representation matrices are unitary, then this
implies LT = L, so that
([D4-1),, L)t = [D4-15, Lo,

and by linearity we obtain the unitary representation
adjoint Wigner projection operator.

t&s—zmﬂwa
Writing «~!f = ¥ so that
D], = X [DA[D-10

and using real unitary matrices, we find

(T, | (UL)ULT, )
= 6uv6uf<’1}1' I(U )T n 1r> (3 1)

These equations establish orthogonality between the
states within a representation as well as showing that
states of equivalent representations (g £ v) are
orthogonal if u # f. For components with distinct
index values and which are derived from an orthogonal
initial tensor, the only nonvanishing contribution to
the right side of Eq. (3.1) is from [D,]},L, and this
contribution vanishes unless g = v. These results still
leave the possibility of nonorthogonality between
corresponding states (with repeated index values) of
equivalent representations. The proof of Egs. (3.4)
requires identical representations, and Wigner pro-
jection operators provide this. This shows that if some
corresponding states of equivalent representations are
orthogonal then all are orthogonal, so that with an
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orthogonal initial tensor

(Thyeoos, | (UENULT 10
= 8,00 Tryevvi, | Thyoevs) (3.2)

To show that the above results also apply to the
scalar product of O(n,c), we first note that the
(diagonal form) metric tensor of O(n,c¢) effects a
transposition by changing row (column) states into
column (row) states. By using rea/ unitary matrices of
S, the above adjoint is also an adjoint projection
operator for this scalar product.

Returning to the representations given by Egs.
(2.8), we note that the orthogonality of bases of such
inequivalent representations follows from Egs.
(3.2) and the similarity of a ““Young pattern subspace”
derived from Young symmetrizers, and the corre-
sponding “Young pattern subspace” derived from
unitary representation Wigner projection operators.
A *“Young pattern subspace” is the space spanned by
all equivalent representations belonging to a Young
pattern. We have already seen that the second column
of Egs. (2.8) shows that the independent equivalent
bases differ only in the way they are entered on the
tensor indices. Thus these equivalent representations
are identical and their bases have identical inner
product structures, i.e.,

CHUPRRRI AN IV PR A)
= (B{(iy, """, i) i B!f‘(jly L=
= (D, 5 i) L DY, o5 o) (3.3)

As a corollary to the recoupling theorem, it is shown
that the inner products between the bases of equivalent
representations have essentially this same structure,
i.e.,
‘<A;‘(i1’ ) l Ay 50

= MA, BXALGy, - i) | BYGy, o) =

= MA, DY(A{(ix, -, i) | DiCas -+ 0
MB, AXB{(iys 5 i) | A5G, - -+, 0)

= (Bi(ivs 5 i) | By, -y =+

T

= }‘(B’ D)<Bg(ll5 T lr) l D‘;(le e 9jf)>

Z(D’ A)<D¥(i1a ey, ir) I AI;(]I; ot 7jr)>
= A‘(D: B)<Dg(il9 Tty Ir) I B?‘(jls M sjr» =
= <Dg(lls Tt ir) I Dl;(jla e 3jr)>, (3'4)

where 4 never depends on labels ¢ or f or on indices
iy, "+, 0T j1,*"*,Jj,, and can be zero. The above
argument for Eqgs. (3.3) and the argument for Egs.
(3.4) given later are based on the initial tensor being
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Cartesian; however, in an added note, generalized
results for non-Cartesian tensors are obtained.

Equations (3.4) show that orthogonalizing all
equivalent representation bases in the same way,
which by Egs. (3.3) is always possible, also diagonalizes
the inner products between equivalent representation
bases. This remaining nonorthogonality can then be
easily removed by recoupling whole bases rather than
by separately recoupling individual states. Such
recoupling does not affect the orthogonality obtained
within the equivalent representation bases.

The nonorthogonality of the states of Eqs. (2.11)
remains a severe problem since it does not seem
possible to put them into a form analogous to that
shown by the right column of Egs. (2.8).

The orthogonality provided by the unitary repre-
sentations of 8, usually does not coincide with that
needed for reduction relative to a particular em-
bedding of some particular matrix subgroup, and so
such states having a common weight (Lie group)
usually need to be rearranged to also gain the desired
orthogonality. Thus the additional rearrangement
which states obtained from Egs. (2.8) require is that
of making equivalent representations mutually orthog-
onal and that has been shown to be easily achieved.
On the other hand, using unitary representations of
8, to symmetrize a rank r tensor becomes very tedious
as r increases because it is necessary to obtain and
use the representation matrices of all r! group ele-
ments. This is a feature of any symmetrization
procedure using Wigner projection operators.

While the subsidiary conditions for tensors of
O(n, c) are based on a scalar product, the resulting
states can in the case of the real orthogonal groups
O(n), also be used with a Hermitian product. Using the
metric tensor inner product, the operation of “trace”
extraction orthogonally partitions a tensor (Reference
15, p. 392). For the symplectic groups Sp(n,c)
“trace” operations are based on the symplectic scalar
product but for the unitary symplectic groups Sp(n)
the resulting states can also be used with a Hermitian
product. For the unitary symplectic groups one would
almost certainly want to use the Hermitian product.
“Trace” extraction with a symplectic metric also
partitions a tensor orthogonally relative to the
Hermitian product. If instead we stay with the scalar
product of Sp(n, ¢) and if initial and final tensors have
respective metrics G and G, where G% = G? = 1 and
G = W-IGW-1, then

W-1= —GWG,

where W denotes the transpose of W.
We find that we are already able to use tensor

(3.5)
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methods to obtain many detailed properties of group
representations and certain recoupling results allow
us to get further properties. If E, denotes a generator
of the self-representation (classical group), then, with
exponents symbolizing repeated Kronecker products,
the generators for a tensor of rank r are
T
E, =2 x E, x (Iy %, (3.6)
k=1

where exponentiation of power zero signifies 1 (not I).
The generator matrix elements are obtained by apply-
ing these operators to the Cartesian tensor compo-
nents of the states. This only uses properties of an
individual representation and not properties requiring
a fully decomposed tensor. Explicit states are not
even required in order to evaluate the matrix elements
of the commuting generators H, -, H, as is now
shown. This has also been shown by Weyl*® for
antisymmetric states and by Baird and Biedenharn®
in a boson operator context. The eigenvalues of the
maximal set of diagonal generators are the weight
vector components and we assume the first rank
tensors to be eigenstates of these commuting genera-
tors. If 4, (wy, - w,) is a state obtained from the
reduction of a tensor on an n-dimensional space and
if the entries of the state consist of w, entries of 1,
w, entries of 2, - - -, and w,, entries of n, then

Han(W1 W) = [wl(Hf)l + WZ(HI)2 + -
+ wn(Hf)n]Aq(Wl T W,,), (37)

so that the weight vector components of 4 (w, -+ w,)
are
wi(Hyp)y + wo(Hy)g + -+ - + wy(Hy),,

wi(Hp)y + wo(Hy)e + - -+ + w,(Hy),,,

(3.8)

wi(Hp), + wo(Hy)e + -+ + w,(Hy), .

The multiplicity of each weight vector is simply the
multiplicity of each index value assignment. Tensor
states having distinct weight vectors are linearly inde-
pendent. This does not require the group to be
semisimple but when such is the case further useful
weight vector properties are ensured.

If # and A’ are contravariant (covariant) self-
representation transformations of SO(3) and SU(2),
respectively, then the group transformations of a
decomposed SO(3)-SU(2) tensor having a single
SU(2) index are W(A)* X A’ X (4)"9]W, where
the gth tensor index is SU(2). It is clear that here

16 H, Weyl, “The Structure and Representations of Continuous
Groups,” The Institute of Advanced Study, 1935 (unpublished).

1509

properties of the whole decomposed tensor are being
used. We can obtain the generator matrix elements
from these expressions by differentiation or else by
using the matrix equation

I+ 6,E, = W + 0,E)"" x (I + 6,E))
X (I + ,E) W,

where 4, is infinitesimal. The operator of Eq. (3.6)
was not symmetrized (hence absence of W) because
it was used according to an operational rather than
matrix definition.

Denoting Kronecker products by exponentation
and with 0, ¢, - - - denoting the parameters of a Lie
group, we see that WA (0, ¢, - - )W yields irreducible
representation matrices. These matrix element func-
tions, which the Peter-Weyl and Wigner-Stone
theorems are concerned with!? (compact group), may
also be individually useful, e.g., those of SO(3) are
symmetric top eigenfunctions.!®

We now take up the evaluation of Clebsch-Gordan
and recoupling coefficients by tensor methods. Our
approach will differ from some usual methods'® in
that Clebsch—Gordan coefficients are directly evaluated
without first being factorized. The Clebsch-Gordan
and recoupling coefficients which we evaluate couple
symmetrized tensor representations. Later we show
how to recouple tensor representations in order to get
states which are composed of simple couplings. With
this we are able to use tensor methods to also evaluate
the usual Clebsch~Gordan and recoupling coefficients.
Due to the use of tensor methods, we can proceed
without introducing operators to label representations
and states. By @ T;‘1 ...;, We denote an irreducibly

A

decomposed tensor of rank r and by T,-l ..., Wwemeana
Cartesian tensor. We are interested in evaluating the
coefficients of

(@Tf,...,.,) (@T;;...,.,) Crs) = ®T%,...r... (39
A u {

The matrix C(r,s) contains the Clebsch~Gordan
coefficients of any irreducible representation appearing
in a rank r + s tensor which is obtained by the cou-
pling of the irreducible representations appearing in
a rank r tensor with the irreducible representations
appearing in a rank s tensor. For mixed tensors one
often wants to retain a certain index configuration.
Considering SO(3)-SU(2) tensors, one might want
to have at most only one spinor index. Although

17 L. C. Biedenharn, in Lectures in Theoretical Physics 5, W. E.
Britten and J. Downs, Eds. (John Wiley and Sons, New York, 1963).

18 A, R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

19 3, J. DeSwart, Rev. Mod. Phys. 35, 916 (1963); D. Lurie and
A. ). Macfarlane, J. Math. Phys. 5, 565 (1964).
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Eq. (3.9) does not immediately maintain such a

configuration, the states of irreducible representations

with two spinor indices can be mapped one-to-one

onto the states of irreducible representations with no

spinor indices, thereby recovering the desired index

configuration. Returning to a general consideration

of Clebsch-Gordan coefficients, we have

OT i, =Ty W+ 9) (3.10)
and ¢
(@Tanﬁ)(@iﬁnﬁj==ﬁrumjwv>xvng
i u
(3.11)

where the Cartesian components were assumed to be
organized so that

(Ti,-~-i,W(r))(Ti1~--."W(s)) = ﬁl-'-i,.+,
Combining Egs. (3.9) and (3.11) gives

(@ Tf‘...im)C‘l(r, $) =Ty W) X W(S)]
; (3.12)

[W(r) x W(s)].

Using Eq. (3.10) and rearranging yields
[W(r) x W(ESIW(r + 5) = C(r, 5).

To evaluate (recoupling) coefficients which reorder
successive couplings suppose we have the coupling

(3.13)

(@ Tf,,..,.,) (@ T;.“...i.) (@ T;’l...,-v) C(r, $)C(u, v)
A I n

=T ... Wu+v), (3.14)

“tuto

where

(@ T,{...,-,) (@ T,/;...i,)C(r, =@Ti.....

A I’ 14
and the coupling
(@ T,:j...,.,) (c;g Tfj...,»k) (@ TZI...ig)C(j, KC(, g)
a v
=T ..., WU+ g, (315

where u + v = f + g and

(@ T:;...i,) (ga Ti’:...ik)C(j, N=aT. ...
Then using

(@ T,.i...,.,) (@ T,.q...i,) (@ T{{...,-v)
A M n

=T, [(W(r) x W(s) x W(v)]

1" “Trigee

and

((:9 T ---w)(? T{’...,.k)((:a T? )
= Tieori W) X W) X W@,

St likte
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wherer+s+v=j+ k + g, we find
[(W(j) x W(k) x W(@I'[W(r) x W(s) x W(v)]
X C(r, s)Clu, )yW-u + YW(f + g)

= C(j,k)C(f, g) (3.16)
and

© Ty, = (@ T;;...,.w) C-X(f, £)C1(j, k)
x [W(j) x Wik) x W™
x [W(r) x W(s) x W(v)]

X C(r, s)C(u, v). 3.17)

The task of constructing W—! is reasonable only
when W is unitary. It has been shown that one can
orthogonalize symmetrized tensors of U(n) quite
easily and thus obtain unitary similarity transforma-
tions W. Since the tensors of the nonunitary classical
groups GL(n, ¢), GL(n, R), SL(n, c), and SL(n, R) are
irreducibly decomposed by symmetrization plus mixed
variance trace operations in the same way as tensors
of U(n), then the unitary similarity transformations
for tensors of U(n) can also be used for tensors of
these nonunitary classical groups. It was for this
reason that the coupling coefficient results were given
in terms of similarity transformations W rather than
in terms of inner products. It might also be worth while
to note the reason for using postmultiplicative simi-
larity transformations. Group representations are
usually defined postmultiplicatively as

Ly, = Z i[9,
2

(so that for an orthogonal basis [D,];, = (v; | Ly.))
and in such a case T’ = TW is associated with
D = WDW.

Some developments are now illustrated using
SU(3). The weights of the states of the self-representa-
tion of SU(3) are the eigenvalues in the following
equations:

H\T, = (13T, H,T,= —(1/2V3)T,,

H,T, = OT,, (3.18a)
H, T, =T\, H, T, =}T,, H,T3= —}T,. (3.18b)
The nonvanishing shift operations are
E;T; = (1/6‘5)7},
where
) ={1,2,21),(,3),3,1,(2,3),3,2} (3.19

Because of Egs. (3.5) and (3.6), we can make the
octets mutually orthogonal by using the following
normalized states, where the states 4,(123) £ B,(123)
have been additionally modified to obtain orthogonal
isospin multiplets of the SU(2) embedding generated
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FiGg. 1. Octet weight diagram. Tensor states and nonvanishing
generator matrix elements are shown for two superimposed octets

{4} and {B}.

by E, ., E,; and (1/\/5)H1. Due to the absence of
numerical factors, ~= is used. Here the tensors T,;; are
Cartesian.

/‘1’1(’.']') = (1/6%)[Tiii + Ty — 2Ty]
= Al(iij) =+ Bl(iij)s i <}J,
Aij) = (16H[—T;; — Tyi; + 2T
= Al(’]]) + B1(l:/:i), i<}
14—1(123) = (1/12£)[T123 + Tos + Tiss + Ty
— 2Ty — 2T30, ) == A44(123) + B,(123),
14—2(123) = l\/3 [les + Tisa — Tz — Tosil
o 2[A4,(123) + B,(123)]
+ [4,(123) + B,(123)], (3.20a)
Byi) = (N2 Tss = Til = An(ii) — By(iif),
i<},
T;;i) = Al(’]]) - Bl(l_.]:i)’
i<j,

By = AN 2Ty, —

31(123) = l[lea + T213 - T132 - sz]

>~ A4,(123) — B,(123),

32(123) = (1/(12)%)[_ Tiog + Tygp + T3 — T231
+ 2Ty, — 2T5]

o= 2[A4,(123) — By(123)]

+ [4,(123) — By(123)]. (3.20b)
The signs have been chosen to agree with the phase
convention proposed by Baird and Biedenharn.?

Normalized states of the decouplet and singlet are
indicated in Table I. Using Eqgs. (3.6) and (3.8) with

20 G, E. Baird and L. C. Biedenharn, J. Math. Phys. 5, 1723 (1964).
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these octet states, we obtain the weight diagrams and
generator matrix elements shown in Fig. 1. These
states also allow us to do the same for the embedded
subgroups.

The states of Eqs. (3.20a) and (3.20b) plus the
third rank symmetric and antisymmetric states yield
a fully orthogonal tensor so that W-!= W. The
singlet, decouplet, and octet group matrices can then
be easily evaluated in the form of homogeneous
polynomials.

The octet states of Eqs. (3.20a) and (3.20b) have
the interesting property of having a simply-coupled
form as shown in Table II. That is, all terms in all
states of octet {4} appear as a Kronecker product of
the first rank triplet with the second rank sextet and
all terms in all states of {B} appear as a Kronecker
product of first and second rank triplets. Here as
well as elsewhere, we adopt the convention that
T, - of Z(ijk - --) is positive. The states of the
octets obtained from Egs. (2.9) and (2.10) are com-
posed of nonsimple couplings which mix irreducible
lower rank representations. The same is true of states
obtained with unitary representation Wigner projec-
tion operators. We now wish to investigate the re-
coupling of states in order to get simple coupling. In
Sec. 2 we found each symmetrized tensor representa-
tion of the matrix group on the underlying space to
be derived from a single representation of 8, so at
first we only work with representations of 8, belonging
to a single arbitrary set of index values. Let y and ¢
be decomposed representations of 8, (e.g., {A(jjk)} ®
{B(ijk)} and {A4(ijk) + B(ijk)}; © {A(jjk) — B(ijk)}, re-
spectively). We assume y and ¢ each provide a direct
sum of identical representations of 8§, [this is true if
both are derived from bases lying entirely in a set of
equivalent representations of §, given by either Eqs.
(2.8) or (2.12)] and we assume ¢ to have bases with
simple couplings. Certainly if there exists a set of bases
with simple couplings, then their direct sum can be
brought to a form yielding a (decomposed) represen-
tation identical to that of any equivalent initial basis.
TasLE II. The couplings among first and second rank constit-

uents of the octets. Normalization factors are omitted and
Y(=Ts+ Ty, Z() =T; — Ty

State Coupling
A T.Y()) — T,Y (i)
A —T,Y() + T.Y(jp)
A,(123) T,.Y(23) + T,Y(13) — 2T, Y(12)
A4,(123) T,Y(23) — T,Y(13)
By(ii)) T.Z(j))
B,3i5) T,Z(3)
B,(123) T,Z(23) + T,Z(13)
B,(123) T,Z(32) + T,LZ(13) + 2T,Z(12)
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TasLE 1. The Hermitian products among the states shown. Here the unnormalized states of Eqs. (2.9a) and (2.9b) and Y(j) =
T;; — Tyand Z(if) = T,; — T;; are used. The selection i = 1,/ = 2, k = 3 emphasizes that distinct index values are used l.ere.

States T,Y(23) T.Y(13) T,Y(12) T,Z(23) T,Z(13) T,Z(12)
aA,(123) 4+ bB,(123) a+b a+b —2(a + b) a—b a—b 0
aAy(123) + bB,(123) a+b —2(a+b) a+b b—a 0 a—b

Thus there exists a similarity transformation ¢ = Qyp
such that {y} and {¢} provide identical representations
of 8,, so L,Q= QL, for all L, of §, and using
Ly, = 3 YulDeluw We have

LaQ% = z IFvaw[g-)a]wu ’
QLa"pu = z 1}"’0[®a]vawu b

v, w

Z(va[:oa]wu - [ﬂ)a]vawu) = 0.

Now we assume the bases  and ¢ to be decomposed
into identical equivalent irreducible representations
D% of §,. Then Eq. (3.21) reads

yielding
3.21)

—ﬁ)f: o --- 0 B On Qs Qig—
0 D Qn Qi
- 0 Ut ‘1):_ \_—Q]’ll Q:m—-
[0 Qi 0, |[DE © 0]
On Qs 0 D
o . o,
L Qi 0, 1L 0 Di_

where Q, are submatrices conforming to the irreduc-
ible representation matrices D% . This yields

{‘DﬁQij - Qi;ﬂ)g = 0}1=1,z,- cemo
{‘DZQéj - Qé;ﬂ): = 0}3=1,2,- cems

{('O::Q:ﬂ - Q;I;j‘:D: = 0} =12, +m>
so by Schur’s lemma

—/-‘111 ol - ,“uI_
fnl pol -

Q=) - (3.22)
Ll - Hogl ]

Since the permutation group constituents of a sym-
metrized tensor basis do not intersect, then we only
couple states belonging to identical sets of index
values. Thus Eq. (3.22) is valid for the permutation
group constituents of each set of index values. In
general u,, may depend on index value. These results
mean we can obtain simple couplings by recoupling
in the same way all pairs of corresponding states of a
pair of symmetrized tensor bases providing identical
representations of §,. These conclusions are also
valid for symmetrized tensor bases of the underlying
matrix group because of the way such bases have been
shown to be composed. The representations with a
simply-coupled form need not be orthogonal; but they
are if the states of the constituent representations are
orthogonal. One would certainly seek such orthog-
onality.

The problem of recoupling bases to obtain a simply-
coupled form has been simplified and we now see how
it reduces to solving linear equations. Table III gives
the Hermitian products of the states shown. Only
states with distinct indices were entered because the
simply-coupled form of such states implies a simply-
coupled form for the states with repeated indices. For
the resulting linear equations we seek two solutions
(a, b), and (a, b),, one which makes all entries of the
first three columns vanish and one which makes all
entries of the last three columns vanish. Discarding
the trivial solution which makes all entries of all
columns vanish, the solutions sought are a, 5 = 1, —1
and a, b = 1, 1. In matrix form this recoupling appears
as

1 0 1 0

0 0 1
[4,(ijk), Ax(ijk), By(ijk), By(ijk)] i i 0
0 1 0 -1

= [A(K) + By(ijk), Ax(iik) + By(ijk),
Aik) — By(iik), Auijk) — By(i)].

This recoupling matrix is seen to have the form given
by Eq. (3.22). After entering appropriate index
values, these states still do not quite agree with those
of Egs. (3.20a) and (3.20b) because the states of Egs.
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(3.20a) and (3.20b) have been further modified to make
isospin multiplets orthogonal. Making such a modifi-
cation before recoupling does not affect the validity
of the recoupling theorem [Eq. (3.22)] because both
equivalent representations are modified in the same
way. The availability of such orthogonal states in a
simply-coupled form allows us to use tensor methods
to obtain Clebsch-Gordan coefficients for the reduc-
tion of any Kronecker product of symmetrized
tensor representations. Recoupling matrix solutions
obtained using Hermitian products also apply to
those nonunitary classical groups whose tensors
decompose in the same way as those of U(n).

Since the SU(n) generators can be mapped one-to-
oneonto the states of the SU(n)adjoint representation,
then reducing a Kronecker product of adjoint repre-
sentations results in certain tensor operators being
obtained as generator polynomials. This can be carried
out by tensor methods because all representations
of SU(n) appear as tensor representations.

We now return to the proof of Egs. (3.4). First we
note that the proof of the recoupling theorem required
only that all initial (final) bases provided identical
representations of 8, [and GL(n,c)] and that the
initial and final representations were identical. Thus
starting with a set of bases which provide identical
representations [Eqs. (2.8)] and have identical inner
product structures [Egs. (3.3) provide this; actually
only inner product structures which are identical up to
a factor are needed], we can recouple such bases to ob-
tain the condition where bases of distinct (identical)
representations are orthogonal to each other (without
necessarily having a simply-coupled form) and within
each basis the inner product structure is the same.
The existence of orthogonal bases providing identical
representations is assured by the fact that, due to the
complete reducibility of all representations of 8,, a
transformation making equivalent representations
mutually orthogonal is independent of that making
equivalent representations identical. Now invert this
process by starting with the final set of bases and
recouple them to recover the initial bases given by
Egs. (2.8). Because the final bases are orthogonal to
each other and have a common inner product structure,
then it is clear that they recouple back to yield bases
which satisfy both Egs. (3.3) and (3.4).

CONCLUSIONS

The tensor symmetrization procedure derived in
Ref. 1 is shown to support rather than disprove Weyl’s
tensor symmetrization theorem. This extended sym-
metrization procedure is shown to be more useful

21 G, E. Baird and L. C. Biedenharn, J. Math, Phys. 5, 1731 (1964).
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than Weyl’s approach because it organizes the states
and can be usefully generalized. The generalizations
described are extended symmetrization procedures
using modified Young symmetrizers and Wigner
projection operators.

The bases obtained from modified Young symme-
trizers do not in general seem sufficiently organized to
be useful, but the fact that a tensor can always be
Peirce-resolved with these symmetrizers will, in a
subsequent publication, be shown to have an impor-
tant application. The orthogonal states obtained with
unitary representation Wigner projection operators
are shown to be not usually those desired and also
one is then required to obtain and use all r! group
matrices in order to form the Wigner projection
operators.

The state organization provided by Egs. (2.8)
makes it possible to show that such symmetrized
tensors can easily be made orthogonal. The state
organijzation [Eqs. (2.8) or (2.12)] shows that bases
having Kronecker product form can be obtained with
recoupling coefficients which do not depend on
individual states within the representations.

Group matrices and Lie group generators are
obtained by tensor methods. In particular, tensor
methods based on Young symmetrizers are shown to
be useful because, using Eqs. (3.3) and (3.4), such
tensors can easily be made orthogonal.

In addition to the usual orthogonality relations
provided by the unitary Wigner projection operator
algebra,?® an additional orthogonality relation [Eq.
(3.2)] is obtained for bases “projected” out of an
orthogonal tensor.

Note added in proof:

Lemma: On Cartesian tensors T ..., , T/ ...; ,* "
we construct bases {4'}, {4"},--- of equivalent
irreducible representations of §,. Some of these bases
may coincide, but otherwise they do not intersect.

Proof. The bases {4'}, {4"}, - cannot intersect
the basis of an inequivalent irreducible representation
of 8, and so must span {4’} + {4"} + ---, where
the sums are direct except for those members which
coincide.

Theorem 1: For bases {4}, {B}, - - -, {D} (of equiv-
alent representations) constructed on a non-Cartesian
tensor according to Egs. (2.8) we find

(A| Ay = (4, BXB,| Byy = -+ = [(4, DXDy| Dy);

22 R. D. Poshusta and F. A. Matsen, J. Math. Phys. 7, 711 (1966).
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{ is always independent of state labels # and fand also
independent of index values.

Proof. Writing T . i+ T, +-
to expand a non- Cartesmn tensor 1n terms of Cartesnan
tensors and symmetrizing according to Egs. (2.8), we
obtain the bases (of equivalent representations):

Ay =)+ Y+,
B =By + B+,

{D}={D}+{D}+-,

so that
(4, Ap = (4| 4D

HAT A+ A A +
<Bt| B, = (B, I B;)

+ (B/|BY+ -+ (B|B)+-
(D,| Dyy = (D} | D}

+ (D} | Dpy+ -+ (D | Dy + .
By Eqgs. (3.3) we have
(A;| 4 = (B | By = -+ = (D, | D),

(A7 | A}y = (B} | B}y) = - - = (D]| D)),

etc. By the preceding lemma either {4’} coincides with
{A"} [hence (A;|A]) = (A4;|4;)] or else {4’} and
{4"} do not intersect and [by Eqs. (3.3)] we have
(A, | 47)A(4’, A") = (4;| Ap). This argument can be
applled to all cross terms to prove the theorem.

Theorem 2: Equations (3.4) also apply to a set of
bases (of equivalent representations) obtained by
symmetrizing non-Cartesian tensors according to

DONALD R.
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Egs. (2.8). The numbers A(4, B), etc., which appear
in Egs. (3.4) will depend on the initial tensor.

Proof. The proof follows by essentially the same
method as that used for Theorem 1.

APPENDIX

The usual Young symmetrizers of the standard
tableaux are also generating units for linearly inde-
pendent minimal right ideals which span the permu-
tation group ring. The right ideal bases {(PQ)}S;;}
yield the linearly independent tensor bases:

First basis

{(PQYSyT, ...,
Second basis

{(PQ)SeT,, ...,

}j=1,2,---m;

},’:1'2’ 2o

m s

mth basis (m = N*)
{(PQ)" Sm; i i,}d=l,2, reem
Using Eq. (2.5), the kth and gth bases are related as
Syk(PQ)’I:Skj’I;'l ceed, = (PQ)';ngTi1 cerdps

so here the operator S, permutes indices as a function
of their position in the initial Cartesian tensor.
Because these states are formed with right instead
of left ideals, the operation L, of §, on state
(PQ):S;;T;, ..., appears as (PQ){S;L,T; ...,;. These
operators L, thus have the effect of permuting the
indices of the Cartesian constituents of the initial
tensor as a function of their symmetrized tensor
position.

The right ideal version of Weyl’s theorem is to
apply a single Young symmetrizer to the n" tensors
obtained by entering all arrangements of each set of
index values into an initial tensor form.

All results in this appendix as well as the corre-
sponding results in Sec. 2 can be given equivalently
in terms of QP Young symmetrizers.
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